Dynamical flow around a cylinder

$$
\left(r^{2}-\frac{c_{1}}{r}\right) \sin ^{2} \theta=c_{0}
$$

which is the same as

$$
r^{3}-\frac{c_{0}}{\sin ^{2} \theta} \cdot r-c_{1}=0
$$

which can be solved by the formula of Cardano:

$$
r^{3}+3 p r+2 q=0
$$

Another possibility was shown by Manfred Braun ${ }^{1}$ and gives a much more better result.

The potential flow around a cylinder has the complex potential

$$
f(z)=u_{\infty}(z+a 2 / z),
$$

where u_{∞} denotes the velocity at infinity and a is the radius of the cylinder.
The real and imaginary parts of f are the velocity potential φ and the stream function ψ, respectively. The streamlines are obtained by keeping ψ fixed and varying φ. They can be generated in the following way:

1. Solve the equation above for $z=x+i y$ (simple quadratic equation).
2. Keep $\psi=\Im f$ at a fixed value and use $\varphi=\operatorname{Ref}$ as the parameter t in parametricplot. To this end the basic arithmetic operations for complex numbers, including the square root, have to be implemented.

The attached file generates a figure of the streamlines and equipotential lines around a cylinder. I have used my "personal" complex arithmetic PostScript command. (It would be more elegant to include them in a special style for complex calculations.)

[^0]

[^0]: ${ }^{1}$ http://www.tug.org/pipermail/pstricks/2004/001746.html

