
TUGboat, Volume 2, No. 2

' . ' ' . 'QX on SMALL MACHINES

Kent S. Harris and Robert M. McClure

Unidot, Inc. Sunnyvale, CA

1. ABSTRACT

As small computers become more sflordable,
the demand for increaaingly sophisticated software

gtms, Unfortunately, much of this software is large
8nd does not easily fit on small computers. Emu-
letion through interpretive techniques typically yields
~(receptable performance. Reengincaring of existing
ro f tme is frequently desirsblc, therefore, for reasons
of bath cost and compatibility. The art of compressing
large mainframe-developed programs into small address
apace machines haa become very important. One such
e@rt is the reengineering of the ?eX typesetting syk
tern. Since this paper really deals with putting large
software systems on small computers, and is not a paper
on QX itself, familiarity with '&X is assumed.

2. INTRODUCTION

m1 is a recent creation by Donald E. Knuth
at Stanford University. It is a system for typesetting
beautiful books-especially books that contain a lot of
mathematics-an area in which the cost effectiveness of

computer typesetting over manual methods is obvious.
The equation

i? a vivid example. That '&X is especially popular
teday compared to other computer typesetting sya-
terns is due primarily to 'I)EX's level of zaphistication
a d ease of use. has recently been endorsed by
the American Mathmatical Society for submission of
machine readable input, a trcnd that is likely to grow
quickly in the p a r s ahead.

The god of this project was to implement '&X
on a smdl, preferably desktop size, computer. We

-
1) The XD in 'IkX ia actualb a Greek chi, and thatdon
tr prsnounced tho name ra the Imt syllable in tednolow. The
name T&X is a registered trademark of the Americm hbthemati.
cd S~cierJ.

also wanted to use a commercially available operat-
ing syrtem that muld provide additional typeaetting
tools such aa editors and other text processing facilities.
Since uNIX? had demonstrated suporior text manage-
ment functions over other operating systems and a p
peared aa if it were becoming a de-FwLo standard for
small machine operating systems, it waa chosen aa

a basis for this implementation. CNIX was in the
process of k ing ported to several %bit architectures
by various manufacturers while already enjoying rather
widespread usage in the DEC PDP-1 la.

Another issue was that of implementation lan-
guage. The C language4 seemed to meet the require-
ments best for programming this class of system on
small processors. It provided the bent combination of
both high and low-level features of auy language that
had reasonable wide-spread distribution.

The flnal major goal was to avoid using comptek
sion techniques such as interpretive systems. Although
interpretation is widespread today (most BASIC sys-
tems are interpretive), and do provide for very com-
pact code, it usually incurs a large performance penalty,
erpecially for programs requiring substantial computa-
tion. was expected to be computation intensive.

The original version of was written in
SAIL, a language developed at the Stanford Artiflcial
Intelligence Laboratory for DEC PDP-lo's and 20%.
Furthermore, T&X was a large program, even with 38
bit words. It seemed to have an insatiable appetite
for memory while building pages of text. The idea of
actually compressing '&X into a 18blt address space
without using intarpretive techniques initially appeared
quit& absurd.
---... -
2) UNIX 18 a trademark or -JVertern Rlee(rir

3) DBC and PDP-I1 are trademrrh of D&it*l Equipment Cap
yoration.

4) Kora@han, Brim W. and Ritehie, Denaim M., The CProp.m-
min6 Laogoyr, Prentice-liall, Englewood CliEb, N m J e w
(1078).

CH1628-1181K)OOO-0380500.75 f 1981 IEEE 380

@ 1981 EEE. Repriatad, with permhion, fmm Digat of P.pm CompCoa Spring '81, F h y 13-20, 1981, 8.n h c i . c o , CA

The god indeed seemed to be a formidable twk.
The methods employed to bring about the rediration
of 'Table-top" 'LEX is what this paper's d l about.

3. MULTkPBOCE'SS APPROACH

It was clear from the sire of the S A I L version
that could not possibly exist as a single proceu
within a lbbi t address space. Because UNDC does not
rupport a runtime overlay system, we decided to split
T@C into two separate but concurrent processes. We
decided to use UNIX's simple but elegant system of

piper. The IJNIX pipe is a mechanism by which the
output of one process (pasal) is routed to the input of
another process (parse). One early question concerned
whether there exiated a division point in where this
simple tandem scheme could be implemented, or were
feedback patha from parad to paasl always necessary?

Figure 1 is a simplified block diagram of data
hw. The vertical dashed line shows the most obvious
place of division. The balancing of instruction lurd data
space requirements between the two prrslres along with
numeroua other details alao dected this division point.
Attar examination of the boxes labeled "Main Control"
and 'State Stacks", it waa determined feedback p a t h
mnld, unfortunatel~, be required. Pass1 and pass2
had to exist aa processes coupled by two piper, one for
communication in the forward direction and one for the
reverse direction.

A few words about virtual memory techniques
ue in order. As much data (both predehed and
gemrated) an possible waa to be kept memory resident
for obvioua performance reasons. Since a &bit data
apace waa simply not enough to hold the numerous
tablea required by '&XI most were moved to secondary
-rage and ached through memory resident b d e n
with b d e r replacement done on a leaat-recently-used
(LRU) basis. We will refer to thew aa virtual memory
0 ayatems. How there VM 8yaterns are incorporated
into d o u r nooks and crannies of 'QX 'Rill become
clear shortly.

4. PA89 ONE

The m r d l purpose of pars1 is to break down in-
put text into a stream of primitives and data for paart,
who does the real work. Aasrl is responsible for macro
de5nition ond expansion and for managing other user
defiped token lists (such as tho output routine, align-
ment testa, and mark texts). l 'kse token Iiats are kept
.t character strings instead of hash indexes or primitive
codes aa in the S A I L verrion. This provides for eaw of
porr l manipulation whereas the SAIL implementation

TUGboat, Volume 2, No. 2

reduces them to parrBlike entities. Subaequeatly, time
honored string bawd algorithms can be uaed. Figure 2
shows our macro expansion stack frame layout.

The haah entry symbol table is managed on a
linear collision basis-applying the hashing function to
the symbol, using this value to index into the haah
table, and then linearly scanning to and either a symbol
match or a free cell. Contents of the hash table are
address pointers to the symbol character string (see

figures 3 and 4). The hwh table is one-to-one with
the first part of the equivalents table. T L equivalents
table contains key information for all primitive control
sequences and user defined control sequences. This ar-
raugemeot is essentially identical to the SAIL version
with the exception that the hash table pointers and
macro text pointers are actually VM pointers.

The VM syatam used to hold the output routine,
alignment templates, and mark texts is illuntrated in
m e 5. The addresses shown are not mandantory and
can be tailored for a particular user's needs. Additional
VM systems can be added to expand allocated rises
of the various elements. I Imvet , the numbers shown
are realistic. This mechanism 01 fixed size allocation
fosters simplicity and saves memory with little loss of
generality.

Two output routine deanition areas are shown,
allowing output routine redefinition without collision.
The next four 4K (byte) blocks comprise the halign and
d i g n template storage areas. The remaining memory
up to the 32K point is currently unuaed. The second
32K is divided into 128 256-byte chunks. Each chunk
can hold one mark t a t . Although there are only
three possible marks per page of text (top, bottom, and
first), pass1 does not h o w where the page break will
be. To solve this problem, we keep up to 128 mark

t e r t r . When pasrd decides it's time to digest the out-
put routine, it indicates to para1 bow many marks were
on the'page just built. Pass1 uses this information to
manage the pointers and text buffers accordingly.

5. PASS TWO

The primary data &ructurea of passd are luge
and complex linked lists. For performance, these bats
are memory resident. However, two tables are v i r t d in
pasebfunt information and the hyphenahion exception
dictionary.

Font information fles typically range between
700 and 1000 bytes in length. Since lj3X aupportr
32 font Bles, the need to keop these table8 on secon-
dary storage is clear. Aa before, font information ffles
arc cached on an LRU basis with a small numbex of

TUGbaot, Volume 2, No. 2

We8 (u a d y four) in memorf at one time. (l i

font changes are relatively rare, this causer little perfor-
mance degradation.

In fact, the only VM syrtem that ha8 bindered
performance eigniflcantly is the hyphenation exception
dictionary. Currently, exceptions are kept in a @le of
aorted b e d length records and simply binary searched.
There are superior methods that we expect to incor-
porate later.

Perhaps the most important implementation
deciaion in passi concerns execution speed rather thaa
code votume. The SAIL version utiliaes floating point
exclurively for its glut? values. This approach ia un-
acceptable considering the poor floating point charac-
teristics of most l5bi t processors.

Moreover, output results will diiTer between vari-
ous processors with slightly different floating point irn-
phmentations due to differences in accumulated round-
off. The solution, of course, is to use fixed point with
approprihe scaling. There is a most conspicuous fly
in this ointment. It is inherent in 'QJC's linebreaking
and pagebreaking algorithms that glue values haw the
sane dynamic range between 0 and 1 as between 1 and
ce. This is essentially the dehition of floating point!

The technique we chose is ueually considered the
worst possible solution-software emulation of hat ing
point. The key, however, is the format used (5gure
6). At first, a l&bit exponent may seem a bit excee
sive, but since this is the natural width of arithmetic
of most small machines, it provides for rapid manipda-
tion. Astonishingly enough, has performed very
well utiliaing this technique.

Tho SAIL version uses floating point excluairsly
for all glue and dimensional data. We limit the use
of floating point to gain both space and speed perfor-
mance. With the exception of 32-bit gluc values and
line widths used within the linebreaking code, dl of
'&X's internal dimensional values are kept sr l&bit in-
tegers. In this implementation of =, internal units
arq mile (.001 inch), providing for a range of f 88.767
inches. For a standard 8.5 by If inch page, this is
certainly sacient.

6. CONCLUSION

A few words about porformance are in order.
Actual measurements so far shmv that TEX on an Onyx
C8002 system can process 8.5 by 11 inch pager of

5) 0ne'of the more Intoreating concept# In b the ldu
that characten and combhations of ehurctan (bow) sm
held together with r flexible tp4ca c&d glue. Aikr pooitblul
calcul.tlon: are done, the gluc ir eel.

8rsr.g. complexity tart in 8bout 5 to 10 mcondn per

page (with hyphenation turned om. Currently, bpp
henation depdea this by a factor of 2 or 3, but thir
is improvable. The system mentioned hu a8 It8 ptocer-
ror a Zilog Z8002 I sb i t microprocessor with 256KB of
main memory, and a secondary *re wnaiating of a
IOMB Winchester disk with m aversge access time of

,

about 55ma.

The techniques described here ue only m ex-
ample of those pouible in the realm of sottwars com-
preasion. The task of compressing software without
grorr performance degradation may not be a ayatematic
one, but thu example illustrates its faasibility.

7. BEFCBENCES

1. Knuth. D.E.. Z W and M E W O N T . New k c -
tianr ;h &&tin& Digital ~res*, American
Mathmatical Society (1979).

FIG* 1 - SIMPLIFIED DATA FLOW
SAIL VERSION

TUGboat, Volume 2, No. 2

HASH[I 1 SYMBOL TABLE

VH SYSTEM
(&K BYTES)

CHARACTER
ATTRIBUTES HWI
TOKEN SCANNER

MACRO T U T
GLOBAL DEF ' LOCK VH SYSTEM I

H I'WATER -

n 16 IS
E X W N T I MANTISSA

ANOTHER
VW SYSTEM

BINARY POINT

FIG* b - GLUE FOIWAT

U

' 819'2

204u

I LINE-BREAKING WlmWS (MILS) I

I

OUTPUT
ROUTINE 1 ...
OUTPUT
ROUTINE 2

ALIGNMENT
TEMPLATE 1

. K 1GHMENT
TENPLATE 4

32768 WRK TEXT f

6S2Wi MAM TEXT 128

FIG* 5 - MlSC* PASS^ VlRTUALlZATlON

