TUGboat, Volume 2, No. 2

21

" TgX on SMALL MACHINES

Kent S. Harris and Robert M. McClure

Unidot, Inc. Sunnyvale, CA

1. ABSTRACT

As small computers become more affordable,
the demand for increasingly sophisticated software
grows, Unfortunately, much of this software is large
and does not easily fit on small computers. Emu-
lation through interpretive techniques typically yields
unacceptable performance. Reengineering of existing
software is frequently desirabie, therefore, for reasons
of both cost and compatibility. The art of compressing
large mainframe-developed programs into small address
apace machines has become very important. One such
effort is the reengineering of the TEX typesetting sys-
tem. Since this paper really deals with putting large
software systems on small computers, and is not a paper
on TEX itself, familiarity with TEX is assumed.

2. INTRODUCTION

TEX! is a recent creation by Donald E. Knuth
at Stanford University. It is a system for typesetting
beautiful books-especially books that contain a lot of
mathematics-an area in which the cost effectiveness of
computer typesetting over manual methods is obvious.
The equation

1 [V

5z | (X s)0 + o)

X Jmoo k=1

it a vivid example. That TEX is especially popular
today compared to other computer typesetting sys-
tems is due primarily to TEX's level of sophistication
and ease of use. TEX has recently been endorsed by
the American Mathmatical Society for submission of
machine readable input, a trend that is likely to grow
quickly in the years ahead.

~ The goal of this project was to implement TEX
on a small, preferably desktop size, computer. We
1) The “X* in TEX is actually a Greek chi, and therefore TEX
is pranounced the same as the first syllable in technology. The

name TEX is a registered trademark of the American Mathemati-
cal Sgclety.

CH1626-1/81/0000-0380$00.75 ; 1981 IEEE

380

also wanted to use a commercially available operat-
ing system that would provide additional typesetting
tools such as editors and other text processing facilities.
Since UNIX? had demonstrated superior text manage-
ment functions over other operating systems and ap-
peared as if it were becoming a de-facto standard for
small machine operating systems, it was chosen as
a basis for this implementation. UNIX was in the
process of being ported to several 16-bit architectures
by various manufacturers while already enjoying rather
widespread usage in the DEC PDP-113.

Another issue was that of implementation lan-
guage. The C language* seemed to meet the require-
ments best for programming this class of system on
small processors. It provided the best combination of
both high and low-level features of any language that
had reasonable wide-spread distribution.

The final major goal was to avuid using compres-
sion techniques such as interpretive systems. Although
interpretation is widespread today (most BASIC sys-
tems are interpretive), und do provide for very com-
pact code, it usually incurs a large performance penalty,
especially for programs requiring substantial computa-
tion. TEX was expected to be computation intensive.

The original version of TEX was written in
SAIL, a language developed at the Stanford Artificial
Intelligence Laboratory for DEC PDP-10’s and 20s.
Furthermore, TEX was a large program, even with 36-
bit words. It seemed to have an insatiable appetite
for memory while building pages of text. The idea of
actvally compressing TEX into a 16-bit address space
without using interpretive techniques initially appeared
(uite absurd.

3) DEC and PDP-11 are trademarks of Digital Equipment Cor-
poration.

4) Kornighan, Brian W. and Ritchie, Dennis M., The C Program-
ming Language, Prentice-Hall, Englewood Cliffs, New Jersey
(1978).

© 1981 JEEE. Reprinted, witk permission, from Digest of Papers CompCon Spring *81, February 2828, 1081, San Francisco, CA.

The goal indeed seemed to be a formidable task.
The methods employed to bring about the realisation
of “Table-top” TEX is what this paper’s all about.

3. MULTFPROCESS APPROACH

It was clear from the size of the SAIL version
that TEX could not possibly exist as a single process
within a 16-bit address space. Because UNIX does not
support a runtime overlay system, we decided to split
TEX into two separate but concurrent processes. We
decided to use UNIX’s simpie but elegant system of
pipes. The UNIX pipe is a mechanism by which the
output of one process (passl) is routed to the input of
another process (pass£). One early question concerned
whether there existed a division point in TEX where this
simple tandem scheme could be implemented, or were
feedback paths from pass® to passl always necessary?

Figure 1 is a simplified block diagram of data
flow. The vertical dashed line shows the most obvious
place of division. The balancing of instruction and data
space requirements between the two passes along with
numerous other details also affected this division point.
After examination of the boxes labeled “Main Control”
and “State Stacks”, it was determined feedback paths
would, unfortunately, be required. Pass! and pasal
had to exist as processes coupled by two pipes, one for
commaunication in the forward direction and one for the
reverse direction.

A few words about virtual memory techniques
are in order. As much data (both predefined and
generated) as possible was to be kept memory resident
for obvious performance reasons. Since a 16-bit data
space was simply not emough to hold the numerous
tables required by TEX, most were moved to secondary
storage and cached through memory resident buffers
with buffer replacement done on a least-recently-used
(LRU) basis. We will refer to these as virtual memory
(VM) systems. How these VM systems are incorporated
into various nooks and crannies of TEX will become
clear shortly.

4. PASS ONE

The overall purpose of pass! is to break down in-
put text into a stream of primitives and data for pass?,
who does the real work. Passl is responsible for macro
definition and expansion and for managing other user
defined token lists (such as the output routine, align-
ment texts, and mark texts). These token lists are kept
as character strings instead of hash indexes or primitive
codes as in the SAIL version. This provides for ease of
passl manipulation whereas the SAIL implementation

381

TUGboat, Volume 2, No. 2

reduces them to pass®-like entities. Subsequently, time
honored string based algorithms can be used. Figure 2
shows our macro expansion stack frame layout.

The hash entry symbol table is managed on a
linear collision basis-applying the hashing function to
the symbol, using this value to index into the hash
table, and then linearly scanning to find either a symbol
match or a free cell. Contents of the hash table are
address pointers to the symbol character string (see
figures 3 and 4). The bash table is one-to-one with
the first part of the equivalents table. The equivalents
table contains key information for all primitive control
sequences and user defined control sequences. This ar-
rangement is essentially identical to the SAIL version
with the exception that the hash table pointers and
macro text pointers are actually VM pointers.

The VM system used to hold the outpul routine,
alignment templates, and mark texts is illustrated in
figure 5. The addresses shown are not mandantory and
can be tailored for a particular user’s needs. Additional
VM systems can be added to expand allocated sizes
of the various clements. However, the numbers shown
are realistic. This mechanism of fixed size allocation
fosters simplicity and saves memory with little loss of
generality.

Two output routine definition areas are shown,
allowing output routine redefinition without collision.
The next four 4K (byte) biocks comprise the halign and
valign template storage areas. The remaining memory
up to the 32K point is currently unused. The second
32K is divided into 128 256-byte chunks. Each chunk
can hold one mark tezt. Although there are only
three possible marks per page of text (top, bottom, and
first), pasal does not know where the page break will
be. To solve this problem, we keep up to 128 mark
tezts. When pass® decides it’s time to digest the out-
put routine, it indicates to pass1 how many marks were
on the page just built. Passi uses this information to
manage the pointers and text buffers accordingly.

5. PASS TWO

The primary data structures of pass® are large
and complex linked lists. For performance, these lists
are memory resident. However, two tables are virtual in
passf-font information and the hyphenation exception
dictionary.

Font inlormation filles typically range between
700 and 1000 bytes in length. Since TEX supports
32 font files, the need to kecp these tables on secon-
dary storage is clear. As before, font information files
are cached on an LRU basis with a small number of

TUGboat, Volume 2, No. 2

files (usually four) in memory at one time. Since
font changes are relatively rare, this causes little perfor-
mance degradation.

In fact, the only VM system that has hindered
performance significantly is the hyphenation exception
dictionary. Currently, exceptions are kept in a file of
sorted fixed length records and simply binary searched.
There are superior methods that we expect to incor-
porate later.

Perhaps the most important implementation
decision in pass £ concerns execution speed rather than
code volume. The SAIL version utilizes floating point,
exclusively for its glue® values. This approach is un-
acceptable considering the poor floating point charac-
teristics of most 16-bit processors.

Moreover, output results will differ between vari-
ous processors with slightly different floating point im-
plementations due to differences in accumulated round-
off. The solution, of course, is to use fixed point with
appropriate scaling. There is a most conspicuous fly
in this ointment. It is inherent in TFX’s line-breaking
and page-breaking algorithms that glue values have the
same dynamic range between 0 and 1 as between 1 and
oo. This is essentially the definition of floating point!

The technique we chose is usually considered the
worst possible solution-software emulation of floating
point. The key, however, is the format used (figure
6). At first, a 18-bit exponent may seem a bit exces-
sive, but since this is the natural width of arithmetic
of most small machines, it provides for rapid manipula-
tion. Astonishingly enough, TX has performed very
well utilizing this technique.

The SAIL version uses floating point exclusively
for all glue and dimensional data. We limit the use
of Bating point to gain both space and speed perfor-
mance. With the exception of 32-bit glue values and
line widths used within the line-breaking code, all of
TEX’s internal dimensional values are kept as 168-bit in-
tegers. In this implementation of TEX, internal units
are mils (.001 inch), providing for a range of -4-32.767
inches. For a standard 8.5 by 11 inch page, this is
certainly suilcient.

8. CONCLUSION

A few words about performance are in order.
Actual measurements so far show that TiX on an Onyx
C8002 system can process 8.5 by 11 inch pages of

§) One of the more Intoresting concepts 1o TEX is the idea
that characters and combinations of charscters (bozes) are
held together with a flexible space called glue. After positional
calculations are done, the giue Is set.

average complexity text in about 5 to 10 seconds per
page {with hyphenation turned off). Currently, hyp-
henation degrades this by a factor of 2 or 3, but this
is improvable. The system mentioned has as its proces-
sor a Zilog 28002 16-bit microprocessor with 256KB of
main memory, and a secondary store consisting of a
10MB Winchester disk with an average access time of
about 55ms.

The techniques described here are only an ex-
ample of those possible in the realm of software com-
pression. The task of compressing software without
gross performance degradation may not be a systematic
one, but this example illustrates its feasibility.

7. REFERENCES

1. Kouth, D.E., TEX and METAFONT, New Direc-
tions in Typesetting, Digital Press, American
Mathmatical Society (1979).

WEN
MARK
TEXT
bl
OUTPUT - TOKEN
™1 routine ™1 scamier
—)
MACRO
"™ Text
e SIATE gl —MaIN. |
STACKS CONTROL
MAIN LINK
LISTS ol
PROCESSORS STACKS
OUTPUT
PROCESSOR

ko

FIG. 1 = SIMPLIFIED DATA FLOW
SAIL VERSION

2 TUGboat, Volume 2, No. 2

mexstx()

CURRENT POINTER T0
EXPANS JON———fn] PHEXCUR PREVIOUS HasH(}) \ W SYSTER
POINYER MEXTXT FRAME (b4 BYTES)
MExArs([(]
T HI-WATER i
MEXARG[N}
ARG ‘0’ ‘
TEXT MACRO TEXT
GLOBAL DEF ~ LOCK—— VM SYSTEM
(blk BYTES)
H
€orsl1)
ARG ‘N’ TEXT v HI=WATER =i
FIG+ 4 ~ MACRO VIRTUALIZATION
pooy TEXT [T ‘
ANOTHER
VM SYSTEM
0] output
ROUTINE 1
HI~WATERssaeiig 409 outeuT
ROUTINE 2
FIG- 2 = MACRO EXPANSION FRAME ' 81921 AL 1enMENT
TEMPLATE 1
204801 AL IGNMENT
TEMPLATE U
HASH TABLE EQUIVALENTS TABLE . :
coSses 32768 § maRK TEXT 1
POINTERS TO MULTI-CHARACTER . 65280 | mark TEXT 128
SYMBOL NAMES , PRIMITIVES AND
MACROS FIG- 5 ~ MISC. PASS] VIRTUALIZATION
31 16 15
| expomeny | mantissa
BINARY murJ
———ceaw F1G+ b =~ GLUE FORMAT
SINGLE CHARACTER
PRIMITIVES AND
MACROS
31 1615 0
GLUE FORMAT (MILs)
CHARACTER :
ATTRIBUTES FOR -
TOKEN SCARNES | Line-BrEaKING WiDTHS Gus) |
F16. 3 - EQUIVALENTS TABLE) €16+ 7 ~ DATA FORMATS

