

MULTLCOLUMN OUTPUT FORMAT

Barbara N. Beeton American Mathematical Society

At the AMS, we are still using the old SAIL version of TEX, which is severely limited in memory capacity. Several of our publications are formatted with very small type in multiple columns; one such publication, the Combined Membership List of the Society and two other mathematical organizations, can require over 15,000 6-point characters on a single printed page.

To avoid overloading memory (both mensize and varsize are susceptible), we take advantage of the fact that, to TEX, each column is a "\page". Instead of saving all columns on a page until the final column is complete, each column is shipped out to the .DVI file as soon as it is ready. The several columns which comprise a true page are then "pasted up" by the output driver software, using instructions stored in an "option" file or interactively by responding to a "format spec" request.

There is another advantage to this technique has: Our publication-quality output device, an Alphatype CRS, sets type one baseline at a time, across the full page width for each baseline. Mechanically, a lens (which transmits the type image from a CRT screen to photographic paper) rides along a worm gear for the required distance, then returns. For most applications, type is set in both forward and reverse directions, but in some cases (because of alignment problems), type can be produced in only one direction. If a page contains 4 columns, say, but the baselines from column to column are not evenly aligned (as in the TUG membership list), driving the lens across the full page width could cause the distance traveled to be over 300% greated than necessary, with a corresponding increase in the length of time required to complete a page. Since the Alphatype is a slow machine (wallclock time can be over 5 minutes for particularly dense pages), the saving is significant.

Initialisation and defaults

The output routine requires two "page counters": \count0 keeps track of columns (or "\pages" in the TEX sense), and \count9 is used to record the printing page number. Depending on how the output driver keeps track of where it is in a .dvi file, one or the other of these can be used to restart a job in the middle, or to print only selected pages.

Registration marks may be output to delimit the trim area; "T" marks, centered top and bottom, or drawn corners may be chosen. Vertical rules may be drawn between columns. Running heads and folios are accommodated, as are top and bottom matter on the first page; these "full-width" elements are output only on the last segment of a page, while registration marks are generated on each segment, assuring that all true pages have the same number of columns for the sake of the output device driver. Multiple sections, each with its own "first page", may be strung together in the same TeX run.

Page width is calculated dynamically. Column and intercolumn widths are specified (in the input) as an integral number of points. If \backslash leaders are to be used, the column and intercolumn widths must be multiples of the leader width, in order to assure correct alignment.

All parameters are initialized; if none are reset, output will be two-column pages of TUGboat dimensions, that is, suitable for printing on 8.5×11 inch paper, with 1 -inch side margins and .75 -inch margins top and bottom. All running head and folio strings are initially empty, and only those required for a particular job need be reset.

Parametars are of 4 types:

$n=$ integer
$d=$ dimension (e.g. 12in)
$x=$ single letter or text string
$c=$ 페 control sequence

This header file (called multcol.hdr) may be used with $A_{M} S-T_{E} X$. If it is, the user must specify

Juseamstex
and input the header files in the following order:

$$
\begin{aligned}
& \text { \input 0-0at.mac } \\
& \text { \input multcol.hdr } \\
& \text { \input 0-0at.fnl }
\end{aligned}
$$

Page dimensions (in points) are set as follows: Page width:
\setcolmax\{n\} number of columns
\setcolwd\{n\} width of one column
\setintercol\{n\} width of gap between columns
\resetpagewd
Page length:
\settoplgt $\{n\}$ height of first-page header
\setbotlgt\{n\} height of first-page footer
\setrheadigt\{ n \} height of running head box
\setrfootigt $\{n\}$ height of folio box
\setcollgt $\{n\}$ height of full-page column
\resetfpagelgt or \resetpagelgt
Page and column numbers (initialized to 1) are set by:
\setpageno\{n\} printing page number lsetspoolno $\{n\}$ column number for spooler
To establish type and placement of trim marks:

\settrimtype\{ $\{x\}$	C, T, or U
\settrimlgt $\{d\}$	default = i1in
\settrimwd $\{d\}$	default = \pagewd
\setheadmargin\{d\}	

Type C gives top and bottom corners at the trim boundaries, T (default) gives " T " marks, and U gives upper corners only. The page contents are centered horizontally within the trim width (the present version does not permit different treatment of left- and right-hand pages, e.g.), and vertically within the trim length unless a different head margin has been specified.

A vertical rule will be drawn between columns if \userule\{T\}
is specified, or suppressed (default) if F.
To define running heads (all text strings default to null):
\eetrunners\{
\firstrun $x \backslash \backslash$ running head on first page:
$T=$ yes or $F=$ no (default)
\rheadfont c \} font; default is 'current' font
loutside $x \backslash$
\inside $x \backslash$
\backslash midhead $x \backslash$
\laftmid $x \backslash \backslash$
\rightaid $x \backslash$
\runskip d $\backslash \backslash$)
\outside and \inside specify the running head segments which appear at the outer margin (left on even pages, right on odd) and toward the spine, respectively. If centered header text is to be the same on left (even) and right (odd) pages, Imidhead is used; otherwise $\backslash l e f t m i d$ and $\backslash r i g h t e i d ~ g i v e ~$ the different segments. \runskip gives the distance between the baseline of the running head and the top of the page body; default $=10 \mathrm{pt}$. \setrunners\{...\} is cumulative: different portions may be initiated at different times, as convenient; no portion returns to the default value automatically, but must be reset.

A folio, or page footer, may be defined by giving the full description:

\setfolio\{ $x\}$

This is not implemented as elaborately as the rumning head, mainly because folios are not as common as running heads in AMS publications.

Top and bottom matter for the first page are specified by:

> setfirsthead $\{x\}$
> setfirstfoot $\{x\}$

These items are set within \vboxes of heights specified by \settoplgt and \setbotlgt.

The following marks are made available for each completed page:

Itoptorn \eirstank at top of first column
llestterm \botmark from last completed column
At the end of a section (bottom of last data column, just before leject) a message or special routine may be inserted:

$$
\text { \def \endjobmag\{x\} }
$$

A common use of this feature is a \send to establish the starting page number for a subsequent section. In any event, the following message is sent to the terminal (and to the .err file) at the end of the job:
\sendo\{data ends on page \curpage, column \xcol\}
(this requires that file 0 not be lopened).

Macro deffnitions

The following "utility" macros are required:
\% avoid vertical glue when making up pages:
\daf \basezero
baselineskip Opt\Iineskip opt\}
\% pseudo-counters:
\% structure: \xcount\{name\}\{value\}
\def \eetxcountw1*2\{setcount7*2

\def \adrucount 1 \{\aetcount7" 1
\advcount7\Idef \#1\{\count7\}\}
\def \chgacount 1 1 $2\{$ setcount7*1
ledveount7 by 2\zodefiflcount7\}\}

X registration marks:
5 "T" marks centered on top and bottom trim edgea
Idef \topregisterf\ubox to opt〔\ves
Vhbox to \trimwd \hfil
|vrule height 24 pt width 0.2pt Vhifil\}
Vhbox to \trimud
Ivrule height 0.2 pt width 0.5 in\hfil\}\}\}
Ides \tbotregisterflvbox to opt $\{$
Thbor to \trimwdfinfil
Ivrule height 0.2 pt width 0.5 in\hfil\}
Vabox to \trimudilhitl
|vrule height 24 pt width 0.2pt \hifil\} |ves\}\}
\% corners at limits of trim area
\def \ctopregisterflvbor to opt
Vhbox to \pagemdflhss \hbox to \triand
CIvrule depth .5in width 0.2 pt
|rrule depth 0.2pt width .5in
lbitl
|vrale depth $0.2 p t$ width .51 n
Irrule depth .5in width 0.2pt\}\hask \vas\}\}
Ides lebotregisterflubox to Optflves
Ihbor to \pagewdilhss \hbox to Itriawd
\{lvrule height .5in width 0.2pt
Vrule hoight 0.2pt width .5in
Thefil
Irrule height 0.2 pt width .5in
|rrule height . 51 n width 0.2 pt$\} \backslash \mathrm{hs} s\}\}$
$A M S-T \mathrm{EX}$ "protects" certain control sequences, e.g. \page as \pagel, and disables the "basic" sequence. The following permits anoorderly transition to the $A M S-T_{E} X$ conventions:
\def \isamster\{B\}
Idef luseanstex\{\gdef 1 isanstex $\{A\}$
\gdef\normaloutput|\{\outa\}\}
Initialization comprises a large number of control sequence pairs, of the following structure:
\dof \colmax\{2\}
\def \setcolmax \#1\{\gdef\colmax\{\#1\}\}
The following conform to this structure, with defaults as shown:

\sotcolmax	lcolmar	2
\antcolwd	licolvd	225
lsetintercol	\intercol	18
\settoplgt	litoplgt	0
lsetbotlgt	libotigt	0
laetrheadlgt	\xrheadlgt	24
lsetriootlgt	lirfootlgt	lrrheadigt
leetcollgt	\|rcollgt	648
lsettrimlgt	lxtrinigt	11in
\sottrimed	lxtriand	\pagemd
lugerule	Vrupe	F
Isetiolio	Tfolio	0

```
Some of the initialization macros are more elaborate:
    \def \headnarginsw{F}
    \def पheadnarginlgt{}
    \def \eetheadmargin #1{\gder\headnarginsw{T}
    \gdef\hoadmarginlgt{半1}}
\dei \topregister{\ttopregister}
\def \botregtater{\tbotregister}
|def \settrintype #1{
    \if T#\{\gdef\topregister{\ttopregiater}
                        \gdef\botregister{\tbotregister}}
    \elsef\If C#1{\gdef\topregister{\ctopregister}
                            \gdef\botregister{\\botregister}}
        \else{\if U#1{\gdef\topregister{\ctopregister}
                    \gdef\botregister{}}
    \else{\sendO{invalid trim type; T marks will be uged}}}}}
\de{ \IIrstrunner{F}
\def \ifrstiolio{F}
\daf \rhfont{}
\def \outrunner{}
\def \inrunner{}
\det \leftmidrunner{}
\de{ \rightmidrunner{}
\def \rumskiplgt{10pt}
\def \setrumners #1{
    \def\firstrun***1\\{\gdef\firstrunner{䋨1}}
    \def\rheadfont##1\\{\gdef\rhfont{{*#1}}
```



```
    \def\inside**i\\\\gdef\inrumer{{**1}}}
    \def\nidhead*#1\\{\gdef\leftmidrunner{{***1}}
                    \gder\rightmidrunner{{**1}}}
    \def\leftraid**1\\{\gdef\leftmidrunner{{**1}}}
    \def\rightmid##\\\{\gdef\rightmidrunner{{**)}}}
    \def\runskip##1\\\{gdef\runskiplgt{**1}}
    #1}
\def \firsthead{}
\def \setfirsthead #1f\gdef\tirstmead{
    \vbox to lxtopigt pt{
        \if \xcol\colmax{{*1}}
        \else{}}}}
\def \firstfoot{}
\def \setfirstioot #1{\gdef\firstfoot{
    \rbox to \xbotlgt pt{
            \if \xcol\colmax{{#1}}
            \else{}}}
\def \setcurpage{\ifpos9{\xdef\curpage{\count9}}
                    lelse{\setcount7 -\count9 adjust for roman numerals
                    \xdef\curpage{-\count7}}}
\def \pageno{1}
\dof \resetcurpage{\setcount9\pageno \setcurpage}
\def \setpageno #1{\gdef\pageno{#1}\resetcurpage}
\resetcurpage
```

\setcounto 1
\def \eetspoolno \#1\{\setcounto \#1 \}
align tops of multiple columns rather than baselinies to accommodate type of different sises

Page dimensions are calculated using counter arithmetic:

```
\def\resetpagelgt{
    \sotcount2 \xcollgt
    ladrcount2 by lirhoadlgt
    ladvcount2 by 2
    ladvcount2 by lxrfootlgt
    \xde{ \pagelgt{\count2 pt}
    \xdef \Theadigt{\\rheadjgt pt}
    \xde{ \rfootlgt{\rrfootlgt pt}}
```

\def \resetfpagelgt-\resetpagelgt
\xdef \mid toplgt\{\xtoplgt pt\}
|xdef lbotigtf(xbotlgt pt\}
leetcount1 lxcollgt
ladrcount1 by-lxtoplgt
ladvcount1 by - -xbotlgt
|reize \counti pt length of column on first page
\gdef \ipage\{T\}\}
\def \howrided\setcounts\xcol \eetcounts 0 \sowide\}
\def \sowidefladvcounts by -1
ladvcount3 by lxcolvd
\ifpos8\{ladrcounts by \intercol
\sowide\}
\else\{\xdef \backslash thiswide\{
ldef \resetpagend\{
lxdel \backslash colwd\{\xcolwd pt\} column measure
Vhsize \colwd
lxdef \xcolflcolmax\}
Vhownide
ladef \pagend\{\thiswide\}
lxdef lxcol\{1\}\}
Iresetpagewd
ordinary page
length of full-page column add length of running head include Vardepth add length of folio full-page length
first page of a section length of first page top matter length of first page bottom matter
length of column on first page

```
\resetipagelgt
```

\def \howide\{\setcount8\xcol \setcounts 0 \sowide\}
for each column, add column width add intercol for all but last column keep going, up to number of columns in current "page"
column mesoure

Running heads and folios are pieced together from input segments for use in the output routine:
ldef Irunnerflhbox to \pagendflinfont
laposerthbox to lpagewd
\{lifeven9\{lhili\lefteldrunnor \hifil\}
lelse\{\htil\rightaidrunner\hifil\}\}\}\1

\olse\{\umskip\inrunner\hfill\null \outrunner\umshidp\}\}\}
Idof \runheadflvbox to \rheadlgtilvas
lif \xcol col maxt
\if T\fpage\{lif F\ifirstrunner\{ \else\{\xumner\}\}
\else\{\runner\}\}
lelsef\}
|vekip ${ }^{\text {runskiplgt\}\} }}$
Idet Irunfoot\{lvbox to Irfootigtives
lif \xcol\colmax\{\tolio\}
\{else\{\}\}\}

A couple more utility definitions for special circumstances:

$$
\begin{aligned}
& \text { |vbox to aize\{labox to OptO\}\vfil\}\hfil\}\} } \\
& \text { Selse\{\} }
\end{aligned}
$$

\dot Varketto
to permit tricky code of the sort used to insert continuation entries at top of nest column

At last! The actual output routine!
\def \midpage\{\hbox to \trimwd\{\hili
\vbox to \trialgt\{\basezero
ltopregister
(if TVheadearginsw\{\vekip \headnarginlgt\}
\else\{\viill\}
lmarkit\par
lvbor to \pagelgt\{
basezero
\runhead
\if T\ipage\{\ifirsthead\}
\elsedt
\gdef \lastternf ${ }^{\text {botmark\} }}$
Whownide calculate width of current "page"
\vion to size\{labox to \thiswide\{\hfil
\if 1 lxcol 0
\else\{\ruler\}\!
\if Alisanstex\{\pagel\}
lelse\{\page\}\}\}
\if T\fpage\{\ifirstfoot\}
\else\{\}
\Irunfoot \}
\visill
\botregister\}\hfil\}
\adrcounto \}
number each output segment uniquely
 \else\{\output\{才outb\}\} \}
\dof \xcolend\{\if \xcol\colmax\{\advcount9 \xdef\curpage\{\count9\}
|veizelxcollgt pt
\gdef\xcol\{1\}
\gdef\Ipage\{F\}\}
\else\{\advxcount\xcol\} \}
loutput\{louta\}
\def \outaf\xcolstart
\xdef\topterm\{\ifirstwark\}
Vidpage
lxcolend\}
\def loutb\{\xcolstart
\backslash idpage
lxcolend\}
And finally, various macros to fill out incomplete columns, terminate sections neatly, and finish up a job, reporting to the user where it ended. In \newcol, intended to permit manual balancing of the last page of a section, the penalty is necessary to overcome possible large negative penalties at other points in the column, especially when the column is broken very close to maximum length.
\def \newcolflpar\penalty -900\vifileject\}
\def \nullcol\{\aboz to \colwd\{\null\}\eject\} empty column to ill page

```
\daf \blankit{
    \if T\IPass{\xdef\fpass{F}\vicill\reportlastcol\oject\blenklt}
    \else{\if 1\xcol{}
        \else{\nullcol\blankit}}}
```

\def \endsection\{\gdef\fpass\{T\}\blankit\}
\def lendjobasg\{\} allow special messages, sending starting page for
next section, etc.
\def \reportlastcolf\sendo\{data ends on page \eurpage, colum \xcol\}\endjobneg\}

