The Fifth ATypI Working Seminar

The Computer and the Hand in Type Design:

The Aesthetics and Technology
 of Digital Letterforms

During the week of July 31-August 7, at Stanford University, the Committee for Education and Research in Letterforms of the Association Typographique Internationale (ATypI) is sponsoring an International Working Seminar on electronic and traditional methods of letter design. The program includes workshops, seminars and illustrated lectures, and it will conclude with a typographical excursion to San Francisco.

The Seminar will begin on Monday morning, August 1, with the keynote address, "A Turning Point in Type Design", by John Dreyfus, Honorary President of ATypI. Other speakers include the type designers Hermann Zapf, Matthew Carter, Andre Guertler, Christian Mengelt, Gerard Unger and Bram de Does; typographers Jack Stauffacher and Charles Bigelow; lettering artists David Kindersley and John Benson; type punch-cutter Henk Drost; designer Veronika Elsher; and computer scientists Donald Knuth, Patrick Baudelaire and Neil Wiseman.

The theme and purpose of the Seminar are:

- To acquaint educators and designers with the new computerized methods of type production and to review certain traditional lettering crafts, including punch-cutting and stonecutting.
- To provide practical experience with computeraided design systems.
- To bring designers and engineers together for future cooperation and creation in type design.
Working installations of the IKARUS, METAFONT, ALTO, CAMEX, and other systems will be available for use during the Seminar. Demonstrations and assistance in using the computers will be provided. Morning seminar sessions will be devoted to working with computer systems, and the systems will be available at other times of the day and night for further exploration.

Prior to the Seminar, information materials on each computer-aided design system, with samples of selected design problems, will be sent to each registered participant. This is to acquaint participants with the systems before their arrival at the Seminar.

The Seminar is intended for design research, not scientific research. Participants do not need scientific training. The emphasis will be on the prac-
tice of design with the new computer technology, and with traditional hand technology.

The Seminar language is English, with translators for German and French.

Fees of $\$ 950$ per person include Seminar, shared double room, meals, reception, and excursion. The rooms and meals are in a Stanford Residence Hall on the Stanford Campus. For a private, single room, the total Seminar fee is $\$ 1025$ per person. [For partial bookings, e.g. seminar without room and meals, or a stay of less than the full week, send inquiries to the address below.]

To reserve a position at the Seminar, or for additional information, write to

Charles Bigelow
President, ATYPI Committee on
Education and Research in Letterforms
Department of Computer Science
Stanford University
Stanford, California 94305 USA
Reservations must be accompanied by the full fee.

Send Submissions to:
Lynne A. Price
TUG Macro Coordinator
Calma R\&D
527 Lakeside Drive
Sunnyvale, CA 94086

TUGBOAT MACRO INDEX

The following list catalogues macros that have appeared in TUGboat. Entries are listed by volume, number, and page as well as author's name. Items that could not be categorized by an obvious headword have been listed under "miscellaneous". Many items refer to parts of large macro packages; users of other packages may find them valuable models for macros of their own.

Readers' comments on the format as well as the contents of this index are welcome.

	II:1 67, 82-98 It: 154 II: 2 A.35	A. K $\mathrm{K}_{\mathrm{M}}^{\mathrm{m}} \mathrm{r}$ B. Berton M. Diez	Indox production	Li 1 Appendix A II: 2 A-28	T. Winograd, W. Paxton M. Dinz		
Appendices	112 4-21	M. Daz	Juetification				
Array mperations	III:2 34-36	L. Lemport	of roviewar's numet	$\begin{aligned} & \text { 11:8 } \\ & 11: 36 \\ & 68 \end{aligned}$	TExareana Class TEXarcana Cluss		
Beamine, sut to top of box	II:1 60,77	A. Kelum	Layout mecros	IV1 37	A. Mohr		
Baliegraphy	4:2 A.25	M. Ofies	Leturs	11:2 A-32-35	M. Ofez		
Bowes	[1.1 59, 73	A. Kivor	Lefturtised	11:2 A-33	M. Drez		
Box mumbers, weltornatic alloen	[17:1 33	M. Pless	Limenumbering	Ill:1 48	TEXarcome Class		
Branching, see if			Lists	11.1 59, 72-72	A. Kellur		
Capital hetiors lerge \sim st beginning of paragreph	14. 9			1 90-110	L. Price M. Diaz		
	14:180,78	A. Kedlor TEXarcane Class		112 A-15			
	11:8 62		Margine	11:2 A-19	M. Diaz		
Roman numerals		M. Miszign, L. Price	Matrictas	11:2 A.30	M. Diaz		
Centreing a sequence of lines	[1:2 A-13	M. Daz	Mmonos	11:2 A-32-35	M. Draz		
Chapters and Sections Cherscter width determination Characters, matros to produce spacial	IL1 : 80-61, 79-81 IL: 111-120 IL: 2 A-8-9, 20-22	A. Kellow L. Prica M. Diez	Miscelianmous				
			astometic printing of maero names	11:3 60-61	L. Price		
	IV:1 30	R. MeClure					
			conderional eveluetion of macros	$1: 250$	M. Spiwak M. Spivak		
	II:1 57, 67-70	A. Kcllor	inpet-dependent macre rectefinition	11:3 59-60	L. Price		
Chmical notetion	11:3 57-58	M. Nichols, B. Beatom	linput within 17	I1:2 50	M. Spivak		
Columns			singit folvens, identifying	II:2 52	M. Spivak		
balanced	II: ${ }^{\text {58-59 }}$	L. Price	Multipication	11:2 47	B. MeKey		
multiplo	I1:2 4 -38-40	M. Dfaz					
.	II:3 24-25	B. Bunton	mecros	[1:1 59-60, 74-76	A. Kellor		
- - . - . -	11.238	8. Exaton		II:2 A-16-18, 36	M. Ditay		
Counters			progran (SAIL)	[1. ${ }^{81} 108$	L. Price, P. Milligan		
			program (Peoce) ${ }^{\text {program errete (SAIL and Pasem) }}$	11:1 94-97	L. Price, P. Milligan		
antomatic allocation	III 33	M. Plast		10.2 43-1			
peoudo	11:1 60, 71	A. Keller	Notis output to the writer on a separate				
.	1121 120	P. Matigan, L. Price					
-	[11:2 30	B. Eenton	fin	If: $60,76,85$	A. Kellor		
Croes referencos	I1:3 24	B. Borton	printed at end of document	[H 2 2	M. Draz		
Dofered eutput	IL:1 60, 00-68	A. Kellor.	Nuill string, treting for	II: 180,77	A. Kellor		
Division	112 41	6. MeKay			M. Spivek		
	141 119-120		Numbering pege	II: $57,70-71$	A. Kollor		
Equaity of integral values	161 119-120	P. Mriligan, L. Prict	lise	Hill 49	TEXarcman Class		
			Output routinam	12:1 57-58, 60-62,	A. Kellier		
character width determination dodaring femilies of a perticuler	IV:1 38	R. MeClure		- • - . - -	$\begin{array}{ll} \text { II: } \\ \text { III: } 2 & 38 \end{array}$	M. Drez B. Betion	
poink siza	14:1 58-57, 65-68	A. Kellor	Overlining	II:2 A-13	M. Diaz		
defintion	II:2 A 711	A. Diaz	Page lajout	IV:1 37	A. Mohr		
dofinition	$\underline{41} 119$	P. Miligen, L. Price	Page muberin		A. Mowr		
$\cdots{ }^{\circ}{ }^{\circ}$	11:2 41-45	P. Milligan	Page numbering	II:1 57, 70-71	A. Keller		
cisplay in table form	1110135	R. Beeman	- . - . . - .	142 A-18, 23	M. Dlaz		
Fontcodes	IIL2 26	C. Jecksen	Paragraphs				
Footnotes	$\begin{aligned} & \text { II: } \quad 50,71-72 \\ & \text { II:2 } 4-24-25 \end{aligned}$	A. Kolloer M. Dres	beginsing with iorge capitel lotters		A. Kellar		
			- . . . - .		M. Diez		
Franch	II:2 A-12	M. Ofaz	$\begin{aligned} & \text { In tions } \\ & \text { indentad } \end{aligned}$	II: 58.28	Probicme colur		
Graphins	II:2 48-49	B. McKey	- - . . . -	II:2 A-13-15	M. Dtaz		
.	[13 63	Texarcene Cless	numberod, seol Lists				
Hashsize	IV:1 36	B. Borten	Perwitheose, assortad sizes	II:2 A-11	M. Draz		
Headinge, page	I1:2 A-23-24	M. Diez	Picturne, ploting	IL:2 48-49	B. MeKay		
Hididen Text	113	TEXercane Cless	Point, decloring font families of a partieular \sim sive				
1				$\begin{array}{ll} 1 t: 1 & 56-57,65-85 \\ 1 t: 2 & A-11 \end{array}$	A. Kcluer M. Ofaz		
comperison of integral valus groupless (if null atring, swe Null string tasting math-mplo (diaplay, seript or seriptecript)	ll:1 119-120	P. Milligem, L. Prica		H:2 A-11	m. Olaz		
	71:248	8. MeKay	Procfs	1:2 A-31-32	M. Diaz		
			Punctuetion, 'Hanging'	111238	Problerst cokumn		
	II:2 46	B. Mckey	Puatrdown atack: Recursion	IV:1 39	Problems cokumn		
				III:2 34-36	L. Lamport		
				11.2 46-48	B. Mekoy		
				11:2 53	M. Spivak		

Refienemes	11:2 4 4-25	M. Diaz
Aogistration marks	II:2 30	B. Beaton
formen numerats, uppercese	11:1 120-121	P. Milligen, L. Price
Seeting charts	[10:1 39	R. Beoman
Spanish	H:2 A-12	M. Dent
Strings trating for \sim equivalonce teming for the mull \sim	$\begin{aligned} & \text { H:3 } 61 \\ & \text { II:1 } 80,7 \\ & \text { II:2 } \\ & 51-51 \end{aligned}$	L. Price A. Kellow M. Spivak
Struts	IV:1 35-36	B. Beoton
Syntox charts	11:3 39-58	M. Pless
Table of Contents	II: $160,62,86$ II:1 111-118 U: 2 A-27-28 III 24	A. Kallor L. Price M. Diaz B. Betton
Tablos paragraphs in	$\begin{array}{ll} \text { II: } 24-25-27 \\ \text { III: } 2 & 38 \end{array}$	M. Diaz Probloms column
testing integral velums . meth-styll (depploy, script or seriptseripk) for string equivalence for the null string	II:1 $119-120$ I:2 46 II: 61 II:1 60,77 II:2 $51-52$	P. Miligan, L. Prica B. MeKay L. Price A. Keller M. Spivak
Theoruns	11:2 A-31-32	M. Dinz
Top, bascine sut to \sim of box	II:1 60, 77	A. Kelmar
TUGboest submiscions	$\begin{array}{ll} \text { Il: } & 53-54 \\ \text { I: } & 25 \end{array}$	B. Becton B. Becton
Underining . .	$\begin{aligned} & \text { II: } 159,73 \\ & \text { I: }: 24-13 \end{aligned}$	$\begin{aligned} & \text { A. Kcller } \\ & \text { M. Dazz } \end{aligned}$
Upporcsese inturs large \sim at bagianing of peragraph Roman numarals	$\begin{array}{ll} \text { II: } & 60,78 \\ \text { I: } 2 & A-15 \\ 11: 1 & 120-121 \end{array}$	A. Kellor M. Diaz P. Milligen, L. Price
Vorbetim mode progren (SALL) progran (Pascel)	$\begin{aligned} & \text { II:1 } 159-60,74-76 \\ & \mathrm{n}: 2 \\ & \mathrm{I}: 1 \\ & \mathrm{~A}-16-18,36 \\ & \mathrm{I}: 1 \\ & 87-93 \end{aligned}$	A. Kcller M. Daz L. Price, P. Maligan L. Price, P. Milligan
Vertical text . .	11:3 64	TEXarcman Class
* * * * *	* * * *	* *

HOW TO BUILD A \STRUT

Barbara N. Beeton American Mathematical Society

Struts are things that keep objects a fixed distance apart, like the wings of a biplane. Because of the way that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ puts boxes together vertically, struts are sometimes needed to maintain the desired distance. The concept was introduced in the definition and explanation of $\backslash \mid$ on pp. 108-109 of the $T_{E X}$ manual [$T_{E X}$ and Metafont]: " $\mathrm{TEX}_{\mathrm{E}}$ doesn't use \baselineskip and \lineskip before and after horizontal rules." The failure of \baselineskip to apply the desired spacing also affects adjacent lhbox pars which contain more than one line, but in that case, a visible vertical rule would not be a satisfactory remedy. As it happens, an invisible vertical rule
is just the thing, but first let us look at the problem in more detail.

In text, \baselineskip is typically set at 2 points greater than the text body size: 10 -on-12, 9 -on11, 8-on-10. For some special work, though, it may be desirable to set material more densely, even "solid" - 10-on-10, etc. Only rarely are lines of text set any closer than that, and struts won't help with that problem in any case, so it will be ignored here. A strut for solid text should be the same height and depth as the tallest and deepest characters in the font; in METAFONT text fonts, a parenthesis () or square bracket [] qualifies, 80 adjacent vertical boxes containing one of these on the last and first lines respectively will be separated by the desired distance. Consider the following example, which consists of three \hbor pars: the first junction lacks sufficient ascenders and descenders to force the baselines apart to the \baselineskip distance (this is \tenpoint\rm \baselineskip 10pt), but the second junction looks no different from two lines in the middle of a paragraph.

This paragraph has no descenders in the last line. answer to this (let's cheat).
(This example may be contrived, but it works.)
Now, define a strut with the maximum height and depth of any character in the font, and insert it at the beginning of the first and end of the last line in each paragraph:

This paragraph has no descenders in the last line.
one can scarce see an answer to this (let's cheat).
(This example may be contrived, but it works.)
Finally, reset \baselineskip 12pt and apply a strut that is 2 points longer:

This paragraph has no descenders in the last line. one can scarce see an answer to this (let's cheat).
(This example may be contrived, but it works.)
There are probably many ways actually to define struts, but only two will be shown here. In one approach, strut is defined within the range of each "size" definition (this is Knuth's approach): \def \tempoint\{\baselineskip 12pt ...
\def \strut\{\lower 3.5pt\vbox to 12pt\{\}\} ... \}
The following is equivalent for \tenpoint, but more efficient (because rules take less memory space

