Matrices	H1: $2 \mathrm{~A}-30$	M. Daz
Memos	II:2 A-32-35	M. Dlaz
Miscelianeous		
automatic printing of macro names avoiding "Argument of (control sequence) has	II:3 60-61	L. Price
an oxtra \}."	II: 250	M. Spivak
conditional evaluation of macros	H:2 50	M. Spivak
input-dependent macro redefinition	II:3 59-60	L. Price
\input within \if	II: 250	M. Spivak
single tokens, identifying	II: 25	M. Spivak
Multipication	II: 247	B. McKay
Nofill		
macros	II: 1 59-60, 74-76	A. Keller
	II:2 A-16-18, 36	M. Diaz
program (SAIL)	II:1 187 -93	L. Price, P. Milligan
program (Pascal)	II:1 9 94-97	L. Price, P. Milligan
program errata (SAll and Pascal)	II: 2 43-44	
Notes		
output to the writer on a separate		
fils	II:1 $60,76,85$	A. Keller
printed at end of document	II:2 A-25	M. Díaz
Nuill string, testing for	II:1 60,77	A. Keller
		M. Spivak
Numbering, page	$\begin{gathered} \text { Il: } 157,70-71 \\ 7 \mathrm{w} \cdot 1 \end{gathered}$	A. Keller
Output routines	$\text { If: } \begin{gathered} 57-58,60-62, \\ 71,82-85 \end{gathered}$	A. Keller
	II:2 A-18, 40	M. Diaz
	III:2 33	B. Beeton
Overlining	II:2 A-13	M. Diaz
Page layout	[V:1 37	A. Mohr
Page numbering	II:1 57, 70-71	A. Keller
	II:2 A-18, 23	M. Diaz
Paragraphs		
beginning with dropped initial caps	IV:2 81	Probiems column
beginning with large capital letters	II: 160,78	A. Keller
	II: 2 A-16	M. Díaz
in tables	III:2 38	Problems column
indented	II: 1 58, 72	A. Keller
.	II: 2 A.13-15	M. Díaz
numbered, see Lists		
with first line all caps	IV:2 80	Probiems column
Parentheses, assorted sizes	II:2 A.11	M. Diaz
Pictures, plotting	II: ${ }^{\text {4-4-49 }}$	B. McKay
Point, declaring font families of a par-		
-	$\text { II: } 2 \text { A-11 }$	M. Díaz
Proofs	I1:2 A-31-32	M. Dfaz
Punctuation, 'hanging'	III:2 38	Problems column
	[v:1 39	Problems column
Push-down stacks	III:2 34-36	L. Lamport
Recursion	II: 2 26-48	B. McKay
		M. Spivak
Referencas	II:2 A-25	M. Diaz
Registration marks	III:2 30	B. Beeton
Roman numerais, uppercase	II:1 120-121	P. Milligan, L. Price
Seating charts	III:1 39	R. Beeman
Slides	IV:2 78	July '83 TUG meeting
Spanish	I1:2 A-12	M. Diaz
Strings		
testing for \sim equivalence	II:3 61	L. Price
testing for the null \sim	11:1 60,77	A. Keller
	11:2 51-51	M. Spivak
Struts	IV:1 35-36	B. Beeton

Syntax charts	II: 3 39-56	M. Plass
Table of Contents	11:1 $60,62,86$	A. Keller
.	I1:1 111-118	L. Price
.	H1:2 A-27-28	M. Diaz
.	II: 24	B. Beeton
Tables	I1: 2 A-25-27	M. Diaz
paragraphs in ~	III:2 38	Problems column
Testing		
integral values	If:1 119-120	P. Milligan, L. Price
math-style (dispiay, script or	II. 246	B. MeKay
for string equivaience	11:3 61	L. Price
for the null string	11:1 60,77	A. Kelier
.	II:2 51-52	M. Spivak
Theorems	II: 2 A-31-32	M. Diaz
Top, baseline set to \sim of box	II:1 60,77	A. Keller
Transparencies	IV:278	July 83 TUG meeting
TUGboat submissions	Il:1 53-54	B. Beeton
	II:3 25	B. Beeton
Underlining	II:1 59, 73	A. Koller
.	11:2 A-13	M. Díaz
Uppercase letters		
dropped initial	Iv:2 81	Problems column
first line of paragraph	1v:2 80	Problems column
large \sim at begining of paragraph	11:1 60,78	A. Keller
.	II: 2 A-16	M. Diaz
	IV:2 81	Problems column
Roman numerals	II: $120-121$	P. Milligan, L. Price
Verbatim		
mode	II:1 59-60, 74-76	A. Kelier
	II:2 A-16-18, 36	M. Diaz
program (SAIL)	11:1 87-93	L. Price, P. Milligan
program (Pascal)	11:1 94-97	L. Price, P. Milligan
Vertical text	II:3 64	TEXarcana Class

Problems

Send Submissions to:
Lynne A. Price
TUG Macro Coordinator
Calma R8D
527 Lakeside Drive
Sunnyvale, CA 94086
Two problems have been submitted by Jim Sterken, Textset Inc. Both deal with the special treatment often given to the first line of the first paragraph of a document.

First line of paragraph all caps

A test for Ars Orientalis required the following:
TWO OWL-SHAPED TSUNa ATTRIBUTED TO EITHER the Shang or Chou dynasty were examined in the Freer Technical Laboratory to determine their materials, method of manufacture, and age. ...

The first line is in all caps, 8pt instead of 10 pt . To do this, I cheated and made the first line with "\hbox\{T\eightpoint\rm WO OWL-SHAPED...\}".

My TEX quiz question is:
Design a smarter macro to do the line breaking, capitalization, and font switch automatically:
\beginchapter Two owl-shaped ...

Paragraph with dropped initial

 Consider:Very often a fancy book
$V_{\text {will begin chapters with a }}$ dropped initial like this ...
Note that it's not $V_{\text {will } \ldots}^{\text {ery } \ldots}$
Question:
How can $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ be made to do this generally?
Editor's suggestion: Since $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is privy only to the font metrics, which do not include a specific definition of character shape, this type of kerning doesn't seem possible without providing further information. But if one specific alphabet were always to be used, it might be possible to provide several additional values for each letter, e.g. the proportion of the letter's width at several heights chosen such that the appearance of a text letter set beginning at that point would have a pleasing appearance.

OBSERVATIONS ON TEX FROM A DIVERGENT VIEWPOINT: A CRITICAL COMMENTARY

Some years ago, the American Mathematical Society began use of a computer typesetting program written by Science Typographers, Inc. (STI) for composition of many of its mathematical publications. At the time, the Society found the STI language the most effective and efficient of the computer composition languages which were intended for setting complex mathematical formulations and were available for testing.

During the years since, Jim Roesser and Roger Jones, co-founders of STI, have worked to improve the language, adding new features-many at the Society's request-and increasing its versatility. When TEX appeared on the scene, the AMS began investigating its potential as a language by which authors with access to computing systems might communicate their manuscripts to the Society in ways which could eliminate some of the costs of scientific publication. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ showed much promise in this area, and considerable effort has been, and is
being, expended to see whether this promise can be realized.
(Both systems have their strengths, however, and it is likely that the AMS will continue using both well into the future. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ itself, in fact, is still in limited production use at the AMS for typesetting mathematical literature; the STI program continues to be relied on heavily for that. T_{EX} is in regular use at the Society for typesetting material requiring very complex page layouts which the STI program would handle with greater difficulty. We expect that TEX82 will be put into production use for mathematical typesetting during the first quarter of 1984. Here and elsewhere, of course, TEX has been used to typeset very many mathematical documents.)

Jim and Roger have followed with interest the development of $T_{E} \mathrm{X}$ at Stanford, at the Society, and elsewhere. Both have attended TUG meetings. At the meeting at Stanford in July, Jim was often critical of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$'s approach to mathematical typesetting. Thinking that the T_{EX} community might benefit from Jim's criticisms, I asked him to write them into an article for TUGboat. Jim declined, but told me that he would write up some comments for his own staff from his notes. He promised to send us a copy, which we could use as we liked.

The following article is Jim's analysis, unedited. His criticisms are occasionally sharp, but generally are based on his very great experience as a mathematical typesetter. We publish it in the hope that, where his criticisms are well-founded, the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ community may move the development of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ in directions which answer them. If so, we will have benefited.

Following Jim's article are commentaries by Don Knuth, Dave Fuchs, Mike Spivak, and Richard Palais, and, lastly, by Barbara Beeton of the AMS, who, probably more than any other person, is qualified to compare the strengths and weaknesses of the $\mathrm{TEX}_{\mathrm{E}}$ and STI programs. The series closes with a final statement from Jim. TUGboat will welcome constructive responses to any of these statements from its readers.

Sam Whidden

Editor's note: Camera copy for Jim Roesser's memo was prepared at Science Typographers, Inc., using the STI typesetting program. The typesetter was a Harris 7400, and fonts from the Times Roman family were used.

