
TUGboat, Volume 5, No. 1

Software) are offering. It is impressive that they
plan to offer phone support for their products and, if
contacted by enough interested VERSATEC users,
would be willing to consider providing a true spooler
for the VERSATEC.

We are planning to have a V M S / W session as
part of the upcoming TUG meeting at Stanford.
If you have suggestions on subjects that should be
discussed that are VMS specific, be sure to contact
me.

NOTICE TO VAX/VMS USERS

David Kellerman
Barry Smith

Early this year, we left Oregon Software, form-
ing a partnership to continue our work with !QX
and WEB. We are continuing to handle the distribu-
tion of TEX software for VAX/VMS systems (Oregon
Software will no longer distribute W) .

Our new address:

Kellerman and Smith
2343 SE 45th Avenue
Portland, Oregon 97215

(503) 232-4799

The following software is currently available:
T@ 1.0 (W 8 2) . rn itself is compatible with
the version put together by David F'uchs,
and offers some additional performance and
friendly features (the PLAIN format is really
preloaded, for example). The system interface
to VMS is cleaner, especially for batch process-
ing. For those who commonly use canned mac-
ros, we've packaged INITEX so that yo^ ,an
easily create saved images with new preloaded
formats. Included on one 2400' tape are
the m w a r e programs, the WEB system, all
program sources and executable images, and
the new AM fonts at twenty-one different
magnifications. (We include a copy of The
qgbook.)
VERTEX. This is an all-new WEB language
Versatec driver program for model 1200 and
V-80 printers. VERTEX uses the VMS
Command Language Definition facility and
has a bewildering number of options. It can
print m 7 8 or TF$ 1.0 DVI files, with the old
or new PXL font files, in either landscape or
portrait orientation. Like W, you can easily
preload your set of common PXL images at your
site. VERTEX is provided in executable image
format on a 600' tape.

IMPRINT. This is a print spooler that,
in various versions, will drive the Imagen
printers (IMPRINT-10, 8/300, 51840, 601240).
IMPRINT uses the VAX/VMS print queueing
facilities and is completely compatible with
the standard PRINT command. It prints files
in Printer, Daisy, Tektronix, Impress, and
DVI formats without intermediate processing.
Even more than VERTEX, IMPRINT has a
ridiculous array of options, as well as several
layers of site and user-dependent defaults to
simplify commands. IMPRINT is provided
in executable image format on a 600' tape,
and is also available directly from the Imagen
Corporation.

All of the above software includes a user's guide,
system manager's installation guide, 90-day uncon-
ditional warranty, telephone support for the same
periosm, and domestic shipping via UPS 2nd-day
air. International orders will be billed for air-freight
costs, and must include a written statement that the
software will not be re-exported.

Prices? is $200 (US), VERTEX is $400, a
package with both T@ and VERTEX is $500, and
IMPRINT (IMPRINT-10, 8,/300) is $1,200 ($900 for
educational institutions). We will be offering s u p
port, maintenance, and update services in the near
future.

Our current projects are a true spooler for the
Versatec, and a VAX/VMS spooling interface to the
Compugraphics 8400/8600 photo-typesetters. We're
open to other requests.

Fonts

Edito~'s note: The two documents on the follow-
ing pages are extracted from a work-in-progress-
the new Metafont-and are thus subject to change.
Nonetheless, they give the flavor of the new ap-
proach to device-independent font definition, and
should be useful for (as David Fuchs has put it in
his report on page 22) 'planning ahead'.

TUGboat, V o h e

$1 METAFONT

5, No. 1
F

1

METAFONT GENERIC FONT FILE FORMAT

PART 45: GENERIC FONT FILE FORMAT 1

1. Generic font file format. The most important output produced by a typical run of METRFONT is
the "generic font" (GF) file that specifies the bit patterns of the characters that have been drawn. The term
generic indicates that this file format doesn't match the conventions of any name-brand manufacturer; but
it is easy to convert GF files to the special format required by almost all digital phototypesetting equipment.
There's a strong analogy between the DVI files written by 'I$$ and the GF files written by METFIFONT; and,
in fact, the file formats have a lot in common.

A GF file is a stream of &bit bytes that may be regarded as a series of commands in a machine-like language.
The first byte of each command is the operation code, and this code is followed by zero or more bytes that
provide parameters to the command. The parameters themselves may consist of several consecutive bytes;
for example, the 'boc' (beginning of character) command has seven parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either
positive or negative, hence they range in value from -231 to 231 - 1. As in TFM files, numbers that occupy
more than one byte position appear in BigEndian order, and negative numbers appear in two's complement
notation.

A GF file consists of a "preamble," followed by a sequence of one or more "characters," followed by a
'"postamble." The preamble is simply a pre command, with its parameters that introduce the file; this
must come first. Each "character" consists of a boc command, followed by any number of other commands
that specify the "black" pixels of a character, followed by an eoc command. The characters appear in the
order that METRFONT generated them. If we ignore no-op commands (which are allowed between any two
commands in the file), each eoc command is immediately followed by a boc command, or by a post command;
in the latter case, there are no more characters in the file, and the remaining bytes form the postamble.
Further details about the postamble will be explained later.

Some parameters in GF commands are "pointers." These are four-byte quantities that give the location
number of some other byte in the file; the first byte is number 0, then comes number 1, and so on.

2. The GF format is intended to be both compact and easily interpreted by a machine. Compactness is
achieved by making most of the information relative instead of absolute. When a GF-reading program reads
the commands for a character, it keeps track of several quantities: (a) the-current row number, y; (b) the
current column number, x; and (c) the current starting-column number, z. These are 32-bit signed integers,
although most actual font formats produced from GF files will need to curtail this vast range because of
practical limitations. (METRFONT output will never allow 1x1, 131, or lzl to exceed 4095, but the GF format
tries to be more general.)

How do GF's row and column numbers correspond to the conventions of TEX and METRFONT? Well, the
"reference point" of a character, in m ' s view, is considered to be at the lower left corner of the pixel in row 0
and column 0. This point is the intersection of the baseline with the left edge of the type; it corresponds
to location (0,O) in METRFONT programs. Thus the pixel in row 0 and column 0 is METAFONT's unit
square, comprising the region of the plane whose coordinates both lie between 0 and 1. Negative values of y
correspond to rows of pixels below the baseline.

Besides x, y, and z, there's also a fourth aspect of the current state, namely the paint-switch, which
is always either black or white. Each paint command advances x by a specified amount d, and blackens
the intervening pixels if paint-switch = black; then the paint-switch changes its state. GF's commands are
designed so that x will never decrease within a row, and y will never increase within a character; hence there
is no way to whiten a pixel that has been blackened.

3. Here is a list of all the commands that may appear in a GF file. Each command is specified by its symbolic
name (e.g., boc), its opcode byte (e.g., 67), and its parameters (if any). The parameters are followed by a
bracketed number telling how many bytes they occupy; for example, 'd[2I1 means that parameter d is two
bytes long.

paint-0 0. This is a paint command with d = 0; it does nothing but change the paint-switch from black to
white or vice versa.

32 TUGboat, Volume 5, No. 1

paint-1 through paint-63 (opcodes 1 to 63). These are paint commands with d = 1 to 63, defined as follows:
If paint-switch = black, blacken d pixels of the current row y, in columns x through x+d - 1 inclusive.
Then, in any case, complement the paint-switch and advance x by d.

paintl 64 d[l]. This is a paint command with a specified value of d; METAFONT uses it to paint when
64 5 d < 256.

paint2 65 d[2]. Same as paintl , but d can be as high as 65535.

paint9 66 d[3]. Same as paintl , but d can be as high as 224 - 1. METAFONT never needs this command,
and it is hard to imagine anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min-x[4] max-x [4] min-y[4] max-y[4] z[4]. Beginning of a character: Here c is the character
code, and p points to the previous boc command (if any) for characters having this code number
modulo 256. (The pointer p is -1 if there was no prior character with an equivalent code.) All
x-coordinates of black pixels in the character that follows will be 2 min-x and < max-x; all y-
coordinates of black pixels will be 2 min-y and 5 max-y. Finally, z is the leftmost potentially black
column in row max-y; it satisfies min-x < z 5 max-x. When a GF-reading program sees a boc, it can
use min-x, max-x, min-y, and max-y to initialize the bounds of an array. Then it sets y + max-y,
paint-switch +- black, and initializes its x and z registers to the stated value of z.

eoc 68. End of character: All pixels blackened so far constitute the pattern for this character. In particular,
a completely blank character might have eoc immediately following boc.

skip1 69 m[l] . Decrease y by m + 1, set x t z, and set paint-switch + black. This is a way to produce m
all-white rows.

skip2 70 m[2]. Same as skipl . but m can be as large as 65535.

skip3 71 m[3]. Same as skipl, but m can be as large as 224 - 1. METAFONT obviously never needs this
command.

new-row 72 u[4]. Decrease y by 1 and set z +- z + u; then set x t z and paint-switch + black. (It's a
general way to finish one row and begin another.)

left-z-83 through left-zl (opcodes 73 to 155). Same as new-row, with u = -83 through -1, respectively.

right-2-0 156. Same as skipl with m = 0 or new-row with u = 0.

right-z-1 through r ightx83 (opcodes 157 to 239). Same as new-row. with u = + I through $83, respectively.
METAFONT generates a new-row command only when lul > 83.

nop 240. No operation, do nothing. Any number of nop's may occur between GF commands, but a nop
cannot be inserted between a command and its parameters or between two parameters.

xxxl 241 k[l] x[k]. This command is undefined in general; it functions as a (k + 2)-byte nop unless special
GF-reading programs are being used. METAFONT generates xxx commands when encountering a
special string; this occurs in the GF file only between characters, after the preamble, and before the
postamble. However, xxx commands can appear anywhere. It is recommended that x be a string
having the form of a keyword followed by possible parameters relevant to that keyword.

xxx2 242 k[2] x[k]. Like xxxl, but 0 5 k < 65536.

xxx3 243 k[3] x[k]. Like xxxl , but 0 5 k < 224. METAFONT uses this when sending a special string whose
length exceeds 255.

X X X ~ 244 k[4] x[k]. Like xxxl , but k can be ridiculously large; k mustn't be negative.

yyy 245 n[4]. This command is undefined in general; it functions as a 5-byte nop unless special GF-reading
programs are being used. METAFONT puts scaled numbers into yyy's. as a result of numspecial

commands; the intent is to provide numeric parameters to xxx commands that immediately precede.

char-loc 246 c[l] v[4] w[4] p[4]. This command will appear only in the postamble, which will be explained
shortly.

pre 247 i[l] k[l] x[k]. Beginning of the preamble; this must come at the very beginning of the file. Parameter i
is an identifying number for GF format, currently 129. The other information is merely commentary; it
is not given special interpretation like xxx commands are. (Note that xxx commands may immediately
follow the preamble, before the first boc.)

TUGboat, Volume 5 , No. 1

post 248. Beginning of the postamble, see below.

post-post 249. Ending of the postamble, see below.

Commands 25@255 are undefined at the present time.

define gf-id-byte = 129 {identifies the kind of GF files described here)

4. The last character in a GF file is followed by 'post'; this command introduces the postamble, which
summarizes important facts that METRFONT has accumulated. The postamble has the form

post p[4] ds [4] cs [4] hppp [4] vppp [4] min-x [4] max-x [4] min-y [4] max-y [4]
(character locators)
post-post q[4] i[l] 223's[24]

Here p is a pointer to the byte following the final eoc in the file (or to the byte following the preamble, if
there are no characters); it can be used to locate the beginning of xxx commands that might have preceded
the postamble. The ds and cs parameters give the design size and check sum, respectively, which are exactly
the values put into the header of the TFM file that METRFONT produces (or would produce) on this run.
Parameters hppp and vppp are the ratios of pixels per point, horizontally and vertically, expressed as scaled
integers (i.e., multiplied by 216); they can be used to correlate the font with specific device resolutions,
magnifications, and "at sizes." Then come min-x, max-x, min-y, and max-y, which bound the values that
x and y assume in all of the characters of this GF file.

5. Character locators are introduced by char-loc commands, which contain a character residue c, a

character device width v, a character width w, and a pointer p to the beginning of that character. (If
two or more characters have the same code c modulo 256, only the last will be indicated; the others can be
located by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share
the same font metric information, hence the TFM file contains only residues of character codes modulo 256.
This convention is intended for oriental languages, when there are many character shapes but few distinct
widths.)

The character device width v is the value of METAFONT's chardw parameter, rounded to the nearest
integer, i.e., the number of pixels that the font designer wishes the character to occupy when it is typeset
within a word.

The character width w duplicates the information in the TFM file; it is a fix-word value relative to the
design size, and it should be independent of magnification.

The backpointer p points to the character's boc, or to the first of a sequence of consecutive nop or xxx
or yyy commands that immediately precede the boc, if such commands exist; such "special" commands
essentially belong to the characters, while the special commands after the final character belong to the
postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc
commands, even though it wasn't q l a i s e d in the description of boc.

6. The last part of the postamble, following the post-post byte that signifies the end of the character
locators, contains q, a pointer to the post command that started the postamble. An identification byte, i ,
comes next; this currently equals 129, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., '397

in octal). METRFONT puts out four to seven of these trailing bytes, until the total length of the file is a
multiple of four bytes, since this works out best on machines that pack four bytes per word; but any number
of 223's is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is
added at the very end.

This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first,
on most computers, even though METRFONT wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip
backwards over the 223's until finding the identification byte. Then it can back up four bytes, read q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the GF reader can discover all the information needed for individual characters.

Unfortunately, however, standard PASCAL does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities, so
GF format has been designed to work most efficiently with modern operating systems. But if GF files have to
be processed under the restrictions of standard PASCAL, one can simply read them from front to back. This
will be adequate for most applications. However, the postamble-first approach would facilitate a program
that merges two GF files, replacing data from one that is overridden by corresponding data in the other.

