
TUGboat, Volume 5, No. 1

* * * * * * * * * * *

Output Devices

* * * * * * * * * * *

OUTPUT DEVICES AND COMPUTERS

Table I: Proof-Quality Devices

Amdahl

(MTS)

Apollo

Ethernet

DEClO *

sun I I / / Textset / / I sun I~C. I 1 1 1 1 1 1 1 Textset

Diablo

630

DEC20

DG

MV8000

HPlOOO

HP3000

IBM (MVS)

IBM(Vh4)

Notes:
* Still running m 8 0

t Graphics supported

Stanford

Most of the interfaces listed here

Epson

MX-80

TwT

are not on the standard distribution

tape. Some of them are considered

proprietary. Information regarding

these interfaces should be obtained

directly from the sites listed.

Imagen, Inc.

Vanderbilt*

Output device data is being main-

tained by Rilla Thedford. Anyone

desiring more information or relay-

ing new information can now send

Faat

4542

JDJ
Wordware

it to her on the Arpanet:

Talaris*

Table II: Typesetters

Fla. Data

OSP

Math

Rev~ews

VAX (UNIX) SARA

VAX (VMS) Intergraph t

Vanderbilt*

Linotron 202 I

GE3000

COS Info.

Stanford

T%eT

Adapt, Inc.* 3

HP2680

SRI,

Columb~a

SLAC

Imagen

Imprint 10

U. British
Columbia

OCLC

Talar's

Texas

A&M

Laser-
grafix

TWT

Perq/
Canon

AMS

1

Qume

Sprint 5

SLAC

CMU

CIT

Symbolics

LGP-1
Versatec

OCLC

Xerox

Dover

Xerox

9700

Univ.

Michigan

COS Info.

TUGboat, Volume 5, No. 1 17

Index to Sample Output
from Various Devices

Camera copy for the following items in this issue
of TUGboat was prepared on the devices indicated,

and can be taken as representative of the output
produced by those devices.

The bulk of this issue, as usual, has been prepared

(using '&X82 for pages 4-11 and T)X80 other-
wise) on the DEC 2060 and Alphatype CRS a t the
American Mathematical Society.

- Autologic APS Micro-5: Description of
Metafont Generic Font file format and Gray
fonts for Metafont proofs, p. 31; DEC 2060.

- Compugraphic 8600: Dean Guenther et al.,
'@X at Washington State University, p. 24;
Amdahl V/8 (M V S) .

- Compugraphic 8600: Goffredo Haus, How to
Tame Your Phototypesetter by m, p. 17;
Univac 1100/80.

- Harris 7500: Han Noot, DVI-Code to the
Harris 7500, p. 18; '@X on CDC Cyber 175-

750, typesetter driven by VAX 111780 (Unix)
and/or PDP 11/45.

- HP 2688A Laser Printer (300 dpi): Susan
Daniels, The HP l&X Macros, p. 49; HP 3000.

- Imagen Imprint-10 (240 dpi): G.M.K. Tobin,
The OCLC' Roman Family of Fonts, p. 36;
Apollo.

HOW TO TAME YOUR PHOTOTYPESETTER BY 'Q&X

Goffredo Haus

C.I.L.E.A. & Istituto di Cibernetica & Te.Co.Graf.

viale Pisa, 10

1-20146 Milano (Italy)

I have implemented m - 1 1 0 0 from MACC on a UNIVAC 1100/80 main-
frame computer at C.I.L.E.A. (Segrate, Milano).

I have used a Compugraphic 8600 phototypesetter as a quality output device
and various low-cost graphic devices to edit documents.

I have read the CG8600 User Manual and I have found a lot of features
which seem to be very useful to produce my documents but, unfortunately,
rn is not able to control them.

So, I have successfully tried to deceive m: I have built (by means of
the FONTPRE program from MACC) a TFM file in which ASCII codes
correspond to particular CG8600 commands to be treated as zerowidth,
zerodepth, zeroheight characters by W.

The CG8600 driver program SETTEX (from MACC) recognizes the font
code and produces a command string suitable for the phototypesetter ac-
cording to the character code.

This simple trick, allows me to completely control CG8600 directly from the
rn source of my document by means of processor and SETTEX driver
program using my special TFM-commands file.

TUGboat, Volume 5, No. 1

DVI-CODE TO THE HARRIS 7500

Han Noot

Introduction

In 1981 it was decided that at SARA (Stichting
Academisch Rekencentrum Amsterdam) TB would
be installed on a Cyber 175-750 under NOS/BE
552. SARA is a computing center which provides
its senice to Amsterdam's two universities and to
Stichting Mathematisch Centrum (the author's in-
stitute) among others. m ' s DVI-code was to be
processed at SMC, where a Hams 7500 phototypeset-
ter, driven by a VAX 11/780 and a PDP 11/45 are
available. (On both computers the UNIX operat-
ing system runs.) The filter which converts DVI-
code to Harris 7500 code as well as the various
programs for the creation and maintenance of font
metric files would be implemented and run under
UNIX at SMC.

At SARA, one obtained a Cyber version of lljX
from Erik Bertelsen, RECAU, Aarhus, Denmark.

We at SMC obtained a lljX version for the VAX
under UNIX from Robert Morris, University of

Massachusetts, Boston, USA.

The Harris 7500 phototypesetter

The Harris 7500 phototypesetter is a CRT
machine with typefonts stored in digital form on
an internal system disc. It produces output on
photographic paper or film. Its setting speed highly
depends on character size and the number and size
of moves between characters; the estimated speed
is between 200 and 300 characters/second when the
typesetter is driven through a 9600 Baud serial inter-
face. Characters can be explicitly positioned with an
accuracy of 0.05 points in both the horizontal and
vertical directions.

When used in so-called 'slave mode', the Harris
7500 accepts a set of commands which is an al-
most ideal target language for the translation of DVI-
code. Its main features that interest us here are:

Horizontal- and vertical move commands which
perform displacements relative to the current
position in the film plane. They come in two
flavors: utilizing absolute machine units (0.05
points) or relative units (1/72 of an 'em' at the
current point size).

Horizontal and vertical position commands rela-
tive to the origin. (A user defined point in the
left margin.)

Characters can be typeset with- or without
automatic updating of the writing beam posi-
tion.

Two character size definition commands. The

first fixes the overall pointsize of the characters
(in units of 0.1 points), the second can ovemde
the pointsize in the horizontal direction as deter-
mined by the first. As a result, horizontal- and
vertical pointsize can be set independently.

A rule command for hardware generated rules.

Slanting hardware to produce slanted versions
of non-slanted characters. There are three pos-
sibdities: rotation through 9, 12 and 15 degrees.
(This feature only gives typographically good
results with sans-serif characters.)

Characters are grouped into fonts of at most 128
characters each.

A naive approach

For every font we need two different font
information files: the familiar rn font metric file

and a file to be used by the DVI-code translator.
This last file contains information on the correspon-
dence between rn characters and Harris characters
and the width of every character. (Width informa-

tion is included because the code translator must be
able to update the horizontal position after typeset-
ting a character.)

We have designed a symbolic human readable
font description from which both font information
files can be generated by program. These pro-

grams use a data base of height-, depth-, and width
values for all the characters that are available on our
typesetter. (We obtained this information through
the help of the Hams corporation.)

The symbolic font description consists of:

a header section,

the character mapping section,

ligature specifications,

kern specifications,

lists of characters of ascending size,

extensible character definitions,

a font parameter part.

The header section just contains the font name,
design size, character coding scheme and whether the
font is a ' N O S - r n font or a 'UNIX-T@C font (see
below).

The character mapping section contains one line
for every character in the TljX font. Such a line has
the form:

TUGboat, Volume 5, No. 1

Nint Fname Cint Sdig Ifrac Pint Hint

in which N, F, C, S, I, P and H are fixed key-letters.
The meaning is the following:

Noct: We are talking about the character with octal
number oct (0 < = oct < = 177) from the rn
font being defined here. (We use octal numbers
because they are used in the font examples in
appendix F of the ?jF)(manual too.)

Fname: This character is represented by a character
taken from the Hams font indicated by name.

Cdec: We use character number dec (0 < = dec < =

127) from this Harris font. (That we have a
decimal number here is for easy correspondence
with Harris documentation.)

Sdig: The character must be set slanted by 9, 12 or
15 degrees (dig = 0, 1 or 2).

Ifrac: The italic correction is frac * character-width,
where frac is a decimal fraction.

Pint: The typesetter must set this character at

pointsize int (specified in units of 0 .1 points).

Hint: The horizontal pointsize must be int, instead
of the value specified by the P-field.

The ligature specification consists of one line of
the form:

Noctl Noct2 Loct3

for each ligature, indicating that W chars octl and
oct2 are to be combined to ligature 0ct3.

Kern specifications are of the form:

Noctl Noct2 Wfrac

indicating that the kerning value for rn characters
octl and oct2 is decimal fraction frac of the width of
char octl .

Next come lists of characters of increasing size
(e. g. a list of left braces). There is one list per line.

Extensible characters are specified by lines of
the form: I

Noctl Toct2 Moct3 Boct4 EoctS

saying that T@ character octl is extensible, having
as top part character oct2, as middle part character
oct3, oct4 as bottom part and oct5 as extension com-
ponent .

This symbolic ?jF)(-font description together
with the data base of Harris character dimensions
was thought to contain all the information needed
to generate rn font metric files by program, but
a few somewhat unexpected problems cropped up.
They required an extension of the character map-
ping definition. We deal with them in the next sec-
tion. Meanwhile we mention that while generating
font metric files, our program performs various con-
sistency checks. For instance, it is checked whether

a character is not both declared to be the first of a
ligature pair and the first of a kern pair. (By the
way, why does rn not allow such -albeit theoretical-
possibilities?)

The device font files for the DVI-code translator
are generated using only the header- and character
mapping parts of the symbolic font specification.
They contain a machine readable form of the N, F,

C, S, P and H fields of the character mapping lines.
Furthermore, they contain the width of the charac-
ters, both in W s rsu's and in typesetter units.
These twofold width values are used to eliminate
rounding errors. As soon as the theoretical (correct)
position on a page, measured in rsu's differs from the
physical (rounded) position measured in typesetter
units (0.01 point) by more than one typesetter unit,
the typesetter is instructed to make a compensating
move.

A complication with device font files is that we
have to generate different files depending on whether
we use W running under NOS or rn under UNIX .
This is so, because our 'NOS-m' and 'UNIX-W'
use different rsu's, namely a 2-l6 point rsu respec-

tively a 2-20 meter rsu. Hence our DVI-code trans-
lator unfortunately has to be aware of which type of

DVI-code it is translating. This is moreover so be-

cause the two rn versions produce slightly different
postamble formats in their DVI-code.

Complications

The font description scheme discussed so far
would work fine, if not for a number of practical
complications, which we will discuss now.

In the first place, Harris characters are generated
by digitizing hand drawn art work. The result is that
even in a straightforward typefont like Times Roman,
not all capitals are of exactly the same height nor do

they have equal depth. The same applies to lower
case characters: 'p' does not always have its height
exactly equal to that of 'r' or its depth equal to that
of 'g'. As a consequence, font metric files cannot
be generated by directly using character dimensions
from the data base (after some unit conversions).
That way we would exceed by far the limit of six-
teen different depth- and height- values per font as
allowed by rn . We considered automatic round-
ing to sixteen different values but had to discard this
for the following reason: In the extension font, ex-
tension components should have an (almost) exact
depth, while the height and depth of for instance the
'+ ' operator may be wrong by quite a lot. A symbol
like '2' is an intermediate case. So rounding must
be done under explicit human control.

TUGboat, Volume 5, No. 1

To make that possible, we introduced into the

character mapping lines an optional A-field (A comes

from as) whch can take one of the following forms:

Aarg. Adarg, Aharg, or Ahargdarg

in which arg is either an octal number or a period

If a line reads:

it means: take the height and depth of character 157

equal to the height and depth of character 141 from

this same TQX font. Ahidj means: take the height

equal to that of character i and the depth equal to

that of character j. Adj means: give the character

its own height but take its depth equal to that of

character j. Finally, a period instead of a character

number (e. g . A . or Ah. etc .) means: take the

character dimension indicated by the period equal to

zero.

The next complication arose from the fact that

in m ' s extension font, components of extensible
characters must have a height of zero whle the cor-

responding Harris characters intersect the base line.
* Furthermore, symbols with limits (like 2) only

come out right when they have a height of zero too.

As a remedy, we introduced an optional U (up) field

in the character mapping lines. It is more general

than is strictly needed, but can be turned to good

use in other circumstances. T h s U field comes in
four forms:

Ud, Uu, Udfrac or Uufrac

meaning the following: Ud pushes the Harris charac-

ter representing the TQX character so much down,

that its top touches the base line. Udfrac pushes

the character down by an amount equal to frac *
(character-height + character-depth), in which frac is

a decimal fraction. Uu and Uufrac work like Ud

and Udfrac, but now in the upward direction.

When all this was done, two problems remained:

there were (just visible) gaps between occurrences of

some extensible character components and between

objects like root signs and rules connected to them.

The problem with extension characters seems entirely

due to the fact that there apparently are minor dis-

crepancies between character height and -depth as

given in the typesetter documentation and their real

physical dimensions. We introduced an E (epsilon)

field for that. It tells the font metric file generating

program to take the height and depth of a character

a fraction 'epsilon' (in our case 0.02) smaller than

* By the way, we wonder if this fact might not be mentioned explicitly in

appendix F of the m a n u a l where the extension font is described. We

had to deduce it from m ' s behavior when big brackets turned out far too

tall Only later on, a short reference to this phenomena, contained in an

appendix of the METAFONT manual, was brought to our attention.

the values contained in the character dimension data

base. This produces just enough overlap between

extensible character components to make the exten-

sible character come out fine.

The problem with roots (and horizontal braces)

is due to the fact that there is sometimes a bit of

white space at the left and right of certain typesetter

characters where we do not want it. Solution: the

R- (reduce w l t e space) field. It has the form:

R? fracl rfrac2

(The order of the ljrac- and rfrac parts may be
reversed and one of them may be omitted.) The

meaning is: reduce the white space to the left of

a character by fracl * character-width and to the

left by frac2 * character-width. @acl and frac2 are

signed decimal fractions.) This is done by having the

typesetter perform small horizontal moves before and

after setting the character. It solves the problem with

roots and furthermore it can be used more generally

to make differently spaced fonts out of existing ones.

To sum up: apart from the fields discussed in

the previous section, a character mapping line may

contain:

an A field to specify that character dimensions

must be taken equal to those of other characters,

an U field to specify vertical displacement of the

character,

a R field to specify changes in the amount of

white space surrounding the character,

an E field to specify that the character height and

-depth must be taken somewhat smaller than the

physical values.

A character mapping line must contain a N, F

and C field; it may contain S, I, P, H, U, R, E or

A fields. When font metric files and device font

files are generated from the symbolic font descrip-

tion, the order of processing of the various fields

of a character-mapping line is crucial. It is the or-

der in the summary of the fields just p e n . First

the character height, -depth and -width are obtained

from the data base. Height and depth are updated

according to the ratio of the character pointsize (P-

field) and the pointsize for whch the data base values

are applicable. The same is done for the width, using

the horizontal pointsize if a H field is there, other-

wise using the P-field. Next, a width value may be

affected by a R-field; height- and depth values are

modified by U-, A- and E- field values, in that order.

Finally all values are converted to proper units and

inserted in the device font- and font metric files.

The rationale for t h s processing order is the fol-

lowing: First the precise dimensions of the physi-

cal character as a result from pointsize specification,

TUGboat, Volume 5, No. 1

upldown moves etc. are calculated. Only there-
after, deliberate errors may be introduced by E- and
A-field values.

The specification of an symbolic font should

proceed in corresponding stages. First, the font is
specified without R-, E- and A-fields. After inspec-
tion of a human-readable version of a font metric
file (probably still containing too many height or
depth values), A-fields are introduced as needed.
Thereafter, on evidence from the typeset output, R-
and E fields can be added. E-fields may only be
added to character specifications not containing A-
fields or to all characters which have the same height
and depth value (taking into account their A-fields).
If this restriction is violated, extra height- and depth
values may again appear.

Finally, it may be useful to sum up which in-
formation from character mapping lines is reflected
in font metric files and which in device font files.
First the font metric file: The F and C fields together
with the character data base determine initial charac-
ter dimensions. These are then acted upon by even-
tual P, H, U, R, E and A field values, so all these
fields may influence the contents of a font metric file.
Furthermore, the I- (italic correction) field is used in
this file too. On the other hand, only the F, C, P,
H, I, U and R fields determine the contents of the
device font file. F, P, H and I specify the state in
which the typesetter must be while typesetting the
character, the U and R fields describe moves to be
performed in the film plane before and after setting
the character.

Miscellmeous topics

To assist in the task of creating and maintaining
symbolic font description files, Gertjan Vinkesteijn

has implemented a kind of special purpose editor.
This program interactively asks for the values of the
various font description fields, checks the response
for correct format, range in which values may lie,
etc .

The translator program, which generates
typesetter code from DVI code can be called with
a number of optional arguments which are used to
specify:

whether 'NOS-DVIY- or 'UNIX-DVI' code must
be processed,

which pages from the document must be typeset
(all of them, only individual ones, ranges of

pages) and in which order,

whether all pages must be set to the length
of the largest one or to their individual length

(which saves some quite expensive photographc
material but which may annoy a printer).

As already stated, all programs are imple-
mented under UNIX in the programming language
C . There is no fundamental reason for this however.
Everything could have been equally well coded in say
PASCAL, but we quite heavily use the UNIX system
call which makes possible to move freely forward or
backward to any position in a file.

Conclusions

The claim made by some that DVI-code can be
used to generate code for almost any reasonable out-
put device has not been falsified by our experience.
On the contrary, it was quite straightforward to
transform DVI-code to code for the Harris 7500.

On the other hand, there is quite a lot of 'device
dependence' (METAFONT dependence?) hidden in

the limitations on font metric files and especially
in the peculiarities of W ' s extension font. In
particular, the 'zero-height' requirement for certain
characters considerably expands the amount of code
to be generated for our typesetter. To typeset one

extension component seven bytes must be sent across
the typesetter-interface. The first three generate a
downward move (one opcode, two operand bytes),
the fourth byte is the actual character and next come
three bytes to move up again. (Some of these moves
could be optimized away, but only at the cost of
complicating the device font files with otherwise un-
necessary height- and depth- values of characters.)
We wonder whether the reason (unknown to us) for
the zero-height requirement is compelling enough
to justify the complications it introduces in driv-

ing output devices and generating font metric files.
Furthermore, could there not be two types of font
metric files: one of the current compacted lund and
one allowing 128 different values for every charac-
ter dimension? In spite of its cost in memory, we
certainly would have used the latter type for the ex-
tension font. Meanwhle we are curious to know,
whether there are others who have encountered prob-
lems analogous to the ones described here

To end with a note of optimism, when every-
thing finally worked, we indeed got typeset output
which looked quite attractive! +

whether some special symbol must be typeset in

the margin in order to demarcate pages (to assist
in cutting them later on) and if so which one,

