
TUGboat, Volume 5, No. 1 

At the deepest level, we could also Bddle with the subroutine 
definitions in cmbase.mf - and of course that would 

essentially amount to the creation of a new family of fonts. 

- DONALD E. KNUTH, Tne Computer Modern Family of Typefaces (1980) 

. . .All hell broke loose. 

- JOHN MlT,TON, Paradise ht, 4 917 (1667) 

The OCLC Roman Family of Fonts 
Georgia K.M. Tobin 

OCLC Online Computer Library Center, Inc. 
* 

"A complete font design is a complex system . . . ." As near as I can tell, everything in Don Knuth's 
marvelous book, The Computer Modem Family of Typefaces, is true; but there is no one statement whose 
truth I will so readily avow as the preceding sentence. My experience with the METAFONT design of OCLC 
ROMAN has shown me :hat a thorough understanding of what is entailed in the complex system that is called 
a family of fonts is essential to successful M F T A F O N T  design. In this report, I will try to show how the 
complexities of the OCLC ROMAN family of fonts have been incorporated into M ETAFONT file structure, 
and to describe the files which fit into that file structure. My intention is to show how one would create a family 
of fonts and, by implication at least, to offer supporting evidence for the power and subtlety of M E T A F O N T  as 
a graphic design tool. 

The creation of workable versions of the fonts outlined was accomplished between March and October 
of 1983 by a font design group consisting of myself; the fine-tuning of these workable versions is an ongoing 
process. I had the pleasure of briefly discussing my designs with Dr. Knuth, but the basis of my design 
technique was gleaned from perusal of The Computer Modern Family of Typefams, and application of the 
ideas contained therein to the peculiarities of OCLC ROMAN. That, combined with experience gained from 
my earlier M E T A F O N T  design work, combined with an inborn desire to run a tidy operation, gave rise to the 
OCLC ROMAN file structure as it now stands. 

My OCLC ROMAN family of fonts is intended to capture the flavor of Stanley Morison's Times 
Roman in the M E T A F O N T  idiom. Times Roman is one of the most popular, most readable, and most read 
typefaces ever designed; it is also, in my opinion, one of the most beautiful. The OCLC ROMAN family of fonts 
includes such standard Times Roman fonts as text, italic, bold, titling, and extended titling. It also includes 



TUGboat, Volume 5, No. 1 37 

a complete symbols font, an italic font suitable for typesetting mathematics, and an extensible font (i.e., one 
whose characters can grow as required by the formula being set) consistent with Dr. Knuth's Computer Modem 
fonts. Furthermore, there are fonts suitable for typesetting text in Cyrillic or in Greek. 

The first point I want to stress is the breadth of the concept of a METAFONT family of fonts, a system 
about which the following statements are true: 

The fonts which make up a family of fonts are clearly distinguishable from one another, yet 
all share certain common traits which identify them as members of that family of fonts. 

The characters which make up a font are clearly distinguishable from one another, yet all 
share certain common traits which identify them as members of that font. 

The structural components which make up the characters in a font are clearly distinguishable 
from one another, yet all share certain common traits which permit them to be integrated 
into a distinguishable character of a distinguishable font of a distinguishable family of fonts. 

The single, particular character thus created must be capable of being sirnultaneousIy the specuc 
representation of a particular character in a particular font of a particular family of fonts, and a gcneml 
template for that particular character at any point size and at any resolution. 

I Family of Fonts 1 

r 
Char l 

I 
. . . 

Figure 1. The Hierarchy in a Family of Fonts 

I 
I METAFONT I 

My experience with OCLC ROMAN has indicated that this rather tall order may be filled by: 

1. Attention to the hierarchical relationship of characters to fonts toa family of fonts in theM ETAFONT file 
structure; 

Style 
Specified 

Resolution x 

Point size n 

2. Attention to the niceties of the particular level in the hierarchy with which a file is concerned; that 
is, a "font" level file should take care of "font" level detail, not "family" level detail or "character" 
level detail. 

&ired Font 

4 

The file structure of OCLC ROMAN corresponds to this hierarchy. Base. m f takes care of details at 
the "family of fonts" level. It contains the definitions and subroutines used by each and evey character in 
each and every font of the OCLC ROMAN family; it also contains subroutines available to each and every 
character, though these subroutines may not be needed to depict a given form. 



TUGboat, Volume 5, No. 1 

Four files take care of details at the "font" level. The first of these is the name of the style of OCLC 
ROMAN to be constructed, e.g. text.mf, italic.mf, bold.mf, etc. This file assigns values to a number of 
variables, including: the heights of upper- and lower-case letters; the various pens used in drawing the font; 
the amount of intercharacter spacing in the font; and the amount of slant in the font. This font.mf file 
d l s  the appropriate fontsetwidths. m f file, which allows the designer to assign values for the width of the 
main body of the character and of the right and left sidebearings for each character in a particular font. 
Font-ligatures. m f provides M ETAFONT with some critical information on the proper kerning of the font 
and what ligatures (if any) are used. Equally important, it gives the font's T~Xinfo. This consists of at least 
seven parameters which control such critical items as interword spacing, shrink and stretch, and slant per 
point. The fourth file, fontswitch.mf, merely specifies the characters that will make up the font. 

At the "character" level of detail, we have the character routines for the font. Each of these 7; 
short program (usually twenty to fifty lines of M ETAFONT code) which describes a particular character in 
a general way; that is, it describes the character in terms such that METAFONT may draw it at any point 
size and for any resolution. 

We need to consider with some care how these files interact. I shall attempt to do this by starting at 
the "top," at the family of fonts level of detail, and working my way downward to the individual character 
level, showing where we obtain the information we require along the way. Let us therefore take a long, hard 

look at base. m f. 

The first small bit of base. m f contains the M ETAFONT code which takes care of various house- 

keeping tasks. These values hold for the entire OCLC ROMAN family. Mode is a value assigned by the 
designer, which must be shared by each font in a family of fonts, because it sets up the values of two factors 
used throughout METAFONT1s computations: pixelshoriz and pixelsvert. These represent, respectively, 
the number of pixels oriented horizontally and the number of pixels oriented vertically, and they control the 

resolution of the output which is produced. The next big chunk of code in base. mf is a subroutine called 
roman begin. m f. This code pertains to the font level. It provides M ETAFONT with such crucial informa- 

tion as what point size of font is to be designed, what sort of grid the font will be designed upon, and what 
sorts of pens will be used. My insistence upon "sorts of" in the final two clauses of the preceding sentence is 
not some stylistic penchant for vagueness, but an accurate representation of what base. m f does. For though, 

as I mentioned, base.mf is the largest and most complex OCLC ROMAN file read by METAFONT, without 
additional instructions from the designer it will draw absolutely nothing. (Its saving grace, of course, is that, 
with the proper additional instructions, it is quite a prolific draftsman.) 

As an example, let us consider the way in which the grid upon which OCLC ROMAN characters 
are designed is defined by base.mf. The code for the two routines that accomplish this is shown in Figure 2. 
We draw six horizontal lines of uniform length at 1) the lowest point which characters with non-rounded 
descenders reach (-d); 2) the baseline upon which all characters sit (0); 3) the greatest height which lower-case 

characters without ascenders reach (m);  4) the greatest height which nonrounded upper-case letters reach 
(h); 5) the greatest height which rounded upper-case letters reach (topp, i.e. h + vo); and 6) the lowest point 
which characters with rounded descenders reach (bott, i.e. -d - vo). Only the y value of the baseline is 

nonnegotiable; all the other y values mentioned in the preceding sentence vary from font to font, and are 
passed to this routine from whichever font.mf file the designer has specified. Each of these six lines starts 
at x = 0 and ends at x = r ,  where r is the width of an individual character which varies from character 
to character and is passed to this routine from whichever fontsetwidths.mf file the designrhas specified. 
The grid is completed by drawing two vertical lines from the highest point to the lowest point, one at x = 0 
and one at x = r .  

The important point to notice here is not the mechanics of constructing the OCLC ROMAN grid, 

but the way in which a METAFONT subroutine provides for both the underlying coherence of a family of 
fonts and the unique qualitiks of a particular font and character. That is, the grid always extends from h + vo 
to -d - vo, but the particular values of h, d ,  and vo vary according to design considerations. 

Thus far, we have discussed that portion of base.mf which pertains to each and every character 
in a given font. All of the remaining subroutines in base.mf provide rote ways to draw certain common 



TUGboat, Volume 5, No. 1 39 

features of individual characters. These move down a level in the hierarchy from the first part of base. mf, 
but provide the same flexibility at that level. That is, they allow for both the individuality of a font and the 

similarity of a family of fonts. 

subroutine box: 
new offset; offset= 0; 

no drawtrace; no proofmode; 
new topp, bott, leftt, n'ghtt; 

topp= h+ w; bott = -d - vo; 
XI = xg = xs = x7 = xg = = X13 =leftt; 

X2 = X4 = X6 = X8 = X10 =  XI^ = X14 =f@htt; 
yl = y2 = -d;  

cpen; 
1 draw 1 . . 2  

Y3 = Y4 = 0; 
draw 3 . . 4; 

YS = Y6 = m; 
draw 5 . . 6; 

Y7 = Y 8  = h; 
draw 7 . . 8; 

Y9 = Yl0 = toPP; 
draw 9 . . 10; 
~ 1 3  = ~ 1 4  = bott; 
draw 13 . . 14; 

trxy 0; 
if italcorr> 0: 
x19 = xm =rightt+ italcorr.pixelshoriz; 

Y19 = t o m  Yx, =O; 
fi; 
trxy pixelsvert .pixelshoriz.slan t ; 

call unitlines 

subroutine unitlines : 
y1 =topp; y2 = bott; cpen; 
newx1,xz;  xl =x2 =O; draw 1 .  . 2 ;  %left 

new xl , x2 ; XI = x2 = r ;  draw 1 . . 2; %right 

Figure 2. "Font Level" subroutine from base.ntf and the grid i t  draws 

Let me backtrack for just a bit to enlarge on what I mean. One of the first things that we notice 
when contemplating the design of a Times Roman-like font is that we will need to draw rather a lot of serifs. 

In fact, we will need (among others) strictly horizontally oriented serifs which extend to either the right 
or the left of the letter's stem, or to both the right and the left of the stem, and strictly vertically oriented 
serifs, which extend either upwards or downwards from the bar, or both upwards and downwards from the 

bar. We will also need several different sorts of sloped serifs. By describing ways to draw these various serifs 
in subroutines in base. mf, we have a way to both preserve the inherent "Times Roman-ness" of each and 
to allow a particular serif to look right for a given style of a given letter at a given point size. To better 
understand how this is done, let us consider symmhserf, the subroutine for a horizontally oriented serif 
which extends to both the right and the left of the letter's stem at either the top or the bottom of a stem. 



40 TUGboat, Volume 5, No. 1 

Whatever routine calls symmhserr must pass it four arguments. Midedge is the point exactly halfway 
between the leftmost and rightmost points on the serif at  its topmost (for a top-of-stem serif) or bottommost 
(for a bottom-of-stem serif) point. Joinstem is the point in the middle of the stem as high as the point at 

which the serif joins the stem. If ybins,sm is less than Ymid&r , symmherif knows that it is dealing with a 
top-of-stem serif; if Yjoinsrrm is greater than ymibge1 it is dealing with a bottom-of-stem serif. Stempen is 
the name of the horizontal pen with which the stem to which this serif is to be connected is drawn. Serifwd 

is the width of the serif. 

Fortified with this knowledge, symmherifs  plodding brain proceeds in the following manner: (See 

Figure 3 to follow along.) 

I will draw the portion of the serif which extends to the left of the stem first. I will do 
that in the following way. I will define a point 1 on the leftmost edge of the stem and 
as high as the point midedge. I will define a point 2 on the leftmost edge of the stem 
and as high as the point joinstem. I will define a point 3 which lies to the left of the 

middle of the stem by a distance equal to one haU the total width of the serif and as 
high as the point midedge. I will define a point 4 which is the same distance to the 
left of the middle of the stem as 3 but which is eithet a minimal pen height above the 

point midedge (if I'm drawing a bottom-of-stem serif) or a minimal pen height below 
the point midedge (if I'm drawing a top-of-stem serif). I will define a point 5 which 
lies one half of the way from point 1 to point 3 and is as high as point 3. I will define 
a point 6 which lies on a concave curve between points 4 and 2; the arc of this curve I 
know from the value of brangle, which I got from this particular font's font. mf jle. 

Now, I am reudy to draw. I will use a circular pen one pixel in diameter. I fill in the 

entire arm bounded by the curve from 4 to 2 and the segment from 3 to 1. That takes 
care of the serif to the left side of the stem. 

Now, I use a horizontal pen of size stempen to extend the stem to the bottom of the 

serif. 

Now, I am ready to draw the portion of the serif which extends to the right of the stem. 
I will do that in the following way. I will define a point 7 on the rightmost edge of the 
stem and as high as the point midedge. I will define a point 8 on the rightmost edge 
of the stem and as high as the point joinstern I will define a point 9 which lies to 
the right of the middle of the stem by a distance equal to one half the total width of 
the serif and as high as the point midedge I will define a point 10 which is the same 
distance to the right of the middle of the stem as 9 but which is either a minimal pen 
height above the point midedge (if I'm drawing a bottom-of-stem serif) or a minimal 

pen height below the point midedge (if I'm drawing a top-of-stem serif). I will define 
a point 11 which lies one half of the way from point 7 to point 9 and is as high as point 
9. 1 will define a point 12 which lies on a concave curve between points 10 and 8; the 
arc of this curve I know from the value of brangle, which I got from this particular 
font's font. mf file. 

Now, I am reudy to draw that side of the serif. I will use a circular pen one pixel in 
diameter. I fill in the entire areu bounded by the curve from 10 to 8 and the segment 

from 9 to 7. That takes care of the serif to the right side of the stem, and I'm all done. 

It  is clear enough that having the subroutine symmhertf will spare us the task of cranking out all 
that code every time we want a serif; but it does more, too. Values which are defined in a font's style.mf 
file are used in symmhserif, both explicitly (e.g. brangle) and implicitly (e.g. serifwd is calculated from 
'Stondarciserfi. This tends to make any serif look as though it were drawn by the same hand; and that lends 
underlying stylistic coherence to the entire family of fonts. That coherence is really the whole point of base. 



TUGboat, Volume 5, No. 1 4 1 

Figure 3. A "Character Level" subroutine from base.mf 

The deepest level in our family of fonts hierarchy is the character level. At this level, the 
designer uses information from the other files at higher levels described above to compose a description 
of a character which at once distinguishes it from other characters in the font, enables it to fit in 

stylistically with other characters in the font, and, in true METAFONT form, makes it adaptable to 
other point sizes and resolutions. 



42 TUGboat, Volume 5, No. 1 

"The Letter I" 
call charbegin(73,ph,OIph*slant ); 

cpen; 
new serif; serif =standardserif Icharw; 
xl = x2 = xg = x4 =good7 (rl2); 
y1 = h; y2 = h-serifht ; 
y3 = 0; y4 = atseiifht ; 
call symmhserif (1,2,7,serif); call symmhserif(3,4,7,serif ); 
hpen; hpenht 1; w7 draw 2 . . 4. 

- - 

Figure 4. A Character Subroutine, and the Character I t  Draws. 

Consider the routine for a capital "I". This is quite a simple routine, and yet even here, 
there is a lot going on. Standardserif is a value defined in each font's style.mf file; cham is a value 
calculated in base.mf using information culled from the style-ligature file and the style.mf file. By 
setting the quotient of these two values equal to the width of the serif passed to symmhserif not 
only in the routine for the letter I but for all letters, the designer is assured that the width of the 
serifs will be uniform throughout the alphabet. Likewise, the pen w7 is defined in base.m f using 
values obtained from the style.mf file; and we know with confidence that the pen will be the same 
for all letters that share the same definition of w7, that is, all letters in a given font. 

The upshot of all this interdependence among the various files which make up the font family 
OCLC ROMAN is this: by carefully designing a basic collection of character forms and carefully 
setting up the subroutines which support those letter forms, we can exploit the inherent flexibility of 
our system to produce a limitless number of variations on the typographic theme we have chosen to 
produce a rich and varied but stylistically coherent family of fonts through skillful manipulation 
of our files. All of which sounds stirring enough; but we must eschew such generalities for a good 

long look at how this translates into the-nitty-gritty of real fonts. 

We first produce a standard text font: 

Figure 5. OCLC ROMAN text 10 point. 



TUGboat, Volume 5, No. 1 43 

By establishing another style. m f file which sets slant to 0.20 rather than 0, but using those 

same characters, we get: 

I "  1 ' 9  1 A I B I c I "D ( "E I " I 
Figure 6. OCLC ROMAN slanted text 10 point. 

We need to do a bit more work to obtain a true italic, which looks like this: 

Figure 7. OCLC ROMAN Italic 10 point. 

8 



TUGboat, Volume 5, No. 1 

All we needed to do this was to create a sty1e.mffile which establishes a slant value of 0.20 and defines 
a set of slightly thinner pens than those used for text. We were able to use the same character forms by and 
large, except for the lower case letters. We also needed to make some changes in the character widths. However, 
the bit of extra work pays off; for by running these character routines with a style.mf file identical to the one 
used for italic except that it sets slant to 0, we get an unslanted italic font. 

Of course, not all the various fonts we want are produced with so few changes from standard text. 

Boldface, for example is not simply text written with broader pens; there are fundamental differences in several 
of the character forms, and the proportions in bold lettering are not merely the proportions of text scaled up. 
Happily, though, our file structure enables us to describe all these differences in the style.mf, styleligatures. mf, 
and style-setwidths. m f files, and to use the subroutines in base. mf. 

This same state of affairs is what helps to make some fonts, which require almost a complete new set 

of character forms, to nevertheless have an OCLC ROMAN look to them. Consider, for example, the following: 

Figure 8. OCLC ROMAN compatible Cyrillic 10 point. 

Despite their superficial dissimilarity, 'I' and 'M' are more nearly akin than 'I' and 'I1. (The second I 
in the preceding sentence is from Dr. Knuth's Computer Modern Roman alphabet.) The first pair share pens; 
they share serif routines; they share h-heights. The second pair share none of those things, and strike us as 
similar because they are, coincidentally, representations of the same English character. 

The font family resemblance becomes more difficult to descry in non-text fonts like the math symbols 
font or the extensible symbols font. 



TUGboat, Volume 5, No. 1 

Figure 9. OCLC ROMAN compatible Extensible Symbols 10 point. 

"ox 

"Ix 

" 2 x  

"3x 

" 4x 

"sx 

"6x 

"7x 

Nevertheless, it is underlying family resemblance among the 6Wodd routines which compose the 
OCLC ROMAN family which enable apparently dissimilar fonts to work together harmoniously. Witness the 
following: 



46 TUGboat, Volume 5,  No. 1 

OCLC ROMAN has a font which corresponds 
to every font in the file plain . tex  used by 
m82. In fact, we at OCLC are using a 
version of p I a i n . tex  with the font families 
redefined to OCLC ROMAN. 

The OCLC ROMAN family of fonts encom- 
passes a complete range of digital typefaces 
suitable for a broad spectrum of uses from 
regular text to scientific and mathematical 
material. 

Text 
Italic 
Medium Bold 
Medium Bold Italic 

Bold 
Bold Italic 

Extra Bold 
Extra Bold Italic 
T I T L I N G  

HEAVY TITLING 
EXTENDED TITLING 
Slanted Text 
Unslanted Italic 
Monospace 

The complete Roman alphabet is available 
in text, medium bold, bold, and extra bold 
weights, with corresponding italics. Roman 
small caps ("titling" faces) are available in 
text and bold weights, as well as in an extended 
version. Specialty versions of the Roman al- 
phahet include slanted text, unslanted italic 
and a monospaced face. 

Non-Roman alphabets include Greek, Cyril- 
lic for modern Russian, Azeri, and a "Slavic" 
character set containing the letters used in 
Bulgarian, Byelorussian, Macedonian, Ser- 
bian and Ukrainian; the latter two are avail- 
able in text weight in both standard and 
slanted versions. 

'X+AX)-f(X) . . /(x) as Ax. . 0. 
A x  

OCLC ROMAN 'S scientific and mathematical 
fonts include math italic in text and bold 
weights, a font of common mathematical signs 
and symbols, including an upper case script 
alphabet, and a font which produces symbols 
of arbitrary size. 

--.  

All of the OCLC ROMAN typefaces are avail- 
able in sizes from 4 to % point and for use 
on devices with 100, 240, 300 or 480 dpi. 


