
TUGboat, Volume 6 (1985), No. 1

Fonts

GENERIC FONT FILE FORMAT

This is a reuised, version of the GF file format descrip-
tion pzlblisked in TUGboat Vol. 5, No. 1, and ccmc
pletely replaces that document. Tne present version is
an eztract from the WEB METAFONT documentation.

1. Generic font file format. The most impor-
tant output produced by a typical run of META-
FONT is the "generic font" (GF) file that specifies
the bit patterns of the characters that have been
drawn. The term generic indicates that this file
format doesn't match the conventions of any name-
brand manufacturer; but it is easy to convert GF
files to the special format required by almost all dig-
ital phototypesetting equipment. There's a strong
analogy between the D V I files written by TEX and
the GF files written by METAFONT; and, in fact,
the file formats have a lot ia-eommon.

A GF file is a stream of &bit bytes that may
be regarded as a series of commands in a machine-
like language. The first byte of each command
is the operation code, and this code is followed
by zero or more bytes that provide parameters to
the command. The parameters themselves may
consist of several consecutive bytes; for example,
the 'boc' (beginning of character) command has
six parameters, each of which is four bytes long.
Parameters are usually regarded as nonnegative
integers; but four-byte-long parameters can be
either positive or negative, hence they range in
value from -231 to 231 - 1. As in TFM files, numbers
that occupy more than one byte position appear in
BigEndian order, and negative numbers appear in
two's complement notation.

A GF file consists of a "preamble," followed by
a sequence of one or more "characters," followed

by a "postamble." The preamble is simply a pre
command, with its parameters that introduce the
file; this must come first. Each "character" consists
of a boc command, followed by any number of other
commands that specify "black" pixels, followed by
an eoc command. The characters appear in the
order that METAFONT generated them. If we
ignore no-op commands (which are allowed between
any two commands in the file), each eoc command
is immediately followed by a boc command, or by a
post command; in the latter case, there are no more
characters in the file, and the remaining bytes form

the postamble. Further details about the postamble
will be explained later.

Some parameters in GF commands are "point-
ers." These are four-byte quantities that give the
location number of some other byte in the file; the
first file byte is number 0, then comes number 1,
and so on.

2. The GF format is intended to be both compact
and easily interpreted by a machine. Compactness is
achieved by making most of the information relative
instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of
two quantities: (a) the current column number, m;
and (b) the current row number, n. These are 32-bit
signed integers, although most actual font formats
produced from GF files will need to curtail this vast
range because of practical limitations. (METAFONT
output will never allow Irnl or In1 to get extremely
large, but the GF format tries to be more general.)

How do GF's row and column numbers corre-
spond to the conventions of and METAFONT?
Well, the "reference point" of a character, in TJ$'s
view, is considered to be at the lower left corner of
the pixel in row 0 and column 0. This point is the
intersection of the baseline with the left edge of the
type; it corresponds to location (0,O) in METAFONT
programs. Thus the pixel in GF row 0 and column 0

is METAFONT'S unit square, comprising the region
of the plane whose coordinates both lie between 0
and 1. The pixel in GF row n and column m consists
of the points whose METAFONT coordinates (x, y)

satisfy m 5 x 5 m + 1 and n 5 y 5 n + 1. Negative
values of m and x correspond to columns of pixels
left of the reference point; negative values of n and y

correspond to rows of pixels below the baseline.
Besides m and n, there's also a third aspect of

the current state, namely the paint-switch, which is
always either black or white. Each paint command
advances m by a specified amount dl and blackens
the intervening pixels if paint-switch = black; then
the paint-switch changes to the opposite state.
GF's commands are designed so that m will never
decrease within a row, and n will never increase
within a character; hence there is no way to whiten
a pixel that has been blackened.

3. Here is a list of all the commands that may
appear in a GF file. Each command is specified by
its symbolic name (e.g., boc), its opcode byte (e.g.,
67), and its parameters (if any). The parameters
are followed by a bracketed number telling how
many bytes they occupy; for example, 'd[2]' means
that parameter d is two bytes long.

TUGboat, Volume 6 (1985), No. 1

paint-0 0. This is a paint command with d = 0; it does nothing but change the
paint-switch from black to white or vice versa.

paint-1 through paint33 (opcodes 1 to 63). These are paint commands with
d = 1 to 63, defined as follows: If paint-switch = black, blacken d pixels of the
current row n, in columns m through m + d - 1 inclusive. Then, in any case,
complement the paint-switch and advance m by d.

paintl 64 d[l]. This is a paint command with a specified value of d; METAFONT

uses it to paint when 64 5 d < 256.

paint2 65 d[2]. Same as paintl , but d can be as high as 65535.

paint3 66 d[3]. Same as paintl , but d can be as high as 224 - 1. METAFONT never
needs this command, and it is hard to imagine anybody making practical use
of it; surely a more compact encoding will be desirable when characters can
be this large. But the command is there, anyway, just in case.

boc 67 c [4] p[4] min-m [4] max-m [4] min-n [4] max-n [4]. Beginning of a character:
Here c is the character code, and p points to the previous character beginning
(if any) for characters having this code number modulo 256. (The pointer p

is -1 if there was no prior character with an equivalent code.) The values of
registers m and n defined by the instructions that follow for this character
must satisfy min-m 5 m 5 max-m and min-n 5 n 5 max-n. (The values
of max-m and min-n need not be the tightest bounds possible.) When a
GF-reading program sees a boc, it can use min-m, max-m, min-n, and max-n
to initialize the bounds of an array. Then it sets m-min-m, n-max-n, and
paint-switch-white .

bocl 68 c[l] del-m[l] max-m [1] deLn[l] max-n[l]. Same as boc, but p is assumed
to be -1; also deLm = max-m - min-m and del-n = max-n - m i n x are given
instead of min-m and min-n. The one-byte parameters must be between 0
and 255, inclusive. (This abbreviated boc saves 19 bytes per character, in
common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for
this character. In particular, a completely blank character might have eoc
immediately following boc .

skip0 70. Decrease n by 1 and set m-min-m, paint-switch-white. (This finishes
one row and begins another, ready to whiten the leftmost pixel in the new
row .)

skipl 71 d[l]. Decrease n by d + 1, set m-min-m, and set paint-switch-white. This
is a way to produce d all-white rows.

skip2 72 d[2]. Same as skipl , but d can be as large as 65535.

skip3 73 d[3]. Same as skipl, but d can be as large as 224 - 1. METAFONT

obviously never needs this command.

new-row-0 74. Decrease n by 1 and set m-min-m, paint-switch-black. (This
finishes one row and begins another, ready to blacken the leftmost pixel in the
new row.)

new-row-I through new-row-I64 (opcodes 75 to 238). Same as new-row-0, but
with m-min-m + 1 through min-m + 164, respectively.

xxxl 239 k[l] x[k]. This command is undefined in general; it functions as
a (k + 2)-byte no-op unless special GF-reading programs are being used.
METAFONT generates xxx commands when encountering a special string;
this occurs in the GF file only between characters, after the preamble, and
before the postamble. However, xxx commands might appear anywhere in
GF files generated by other processors. It is recommended that x be a string

TUGboat, Volume 6 (1985), No. 1

having the form of a keyword followed by possible parameters relevant to that
keyword.

xxx2 240 k[2] x[k]. Like xxxl , but 0 5 k < 65536.

xxx9 241 k[3] x[k]. Like xxxl , but 0 5 k < 224. METAFONT uses this when
sending a special string whose length exceeds 255.

xxx4 242 k[4] x[k]. Like xxxl, but k can be ridiculously large; k mustn't be
negative.

yyy 243 y[4]. This command is undefined in general; it functions as a 5-byte no-op
unless special GF-reading programs are being used. METAFONT puts scaled
numbers into yyy's, as a result of numspecial commands; the intent is to
provide numeric parameters to xxx commands that immediately precede.

no-op 244. No operation, do nothing. Any number of no-op's may occur between
GF commands, but a no-op cannot be inserted between a command and its
parameters or between two parameters,

char-loc 245 c[l] dx[4] dy [4] w[4] p[4]. This command will appear only in the
postamble, which will be explained shortly.

char-loco 246 c[l] dm[l] w[4] p[4]. Same as char-loc, except that dy is assumed to
be zero, and the value of dx is taken to be 65536 * dm, where 0 < dm < 256.

pre 247 i[l] k[l] x[k]. Beginning of the preamble; this must come at the very
beginning of the file. Parameter i is an identifying number for GF format,
currently 131. The other information is merely commentary; it is not given
special interpretation like xxx commands are. (Note that xxx commands may
immediately follow the preamble, before the first boc.)

post 248. Beginning of the postamble, see below.

post-post 249. Ending of the postamble, see below.

Commands 250-255 are undefined at the present time.

define gf-id-byte = 131 {identifies the kind of GF files described here)

4. Here are the opcodes that METRFONT actually refers to.

define paint-0 = 0 {beginning of the paint commands)
define paint1 = 64

{move right a given number of columns, then black * white)
define boc = 67 { beginning of a character)
define bocl = 68 { short form of boc)
define eoc = 69 { end of a character)
define skip0 = 70 { skip no blank rows)
define skip1 = 71 {skip over blank rows)
define new-row-0 = 74 {move down one row and then right)
define xxxl = 239 { for special strings)
define xxx9 = 241 { for long special strings)
define yyy = 243 { for numspecial numbers)
define char-loc = 245 {character locators in the postamble)
define pre = 247 { preamble)
define post = 248 {postamble beginning)
define post-post = 249 {postamble ending)

5. The last character in a GF file is followed by 'post'; this command introduces the
postamble, which summarizes important facts that METAFONT has accumulated.
The postamble has the form

post p[4] ds [4] cs [4] hppp [4] vppp [4] min-m [4] max-m [4] min-n [4] maz-n [4]
(character locators)
post-post q[4] i[l] 223's[24]

TUGboat, Volume 6 (1985), No. 1

Here p is a poiater to the byte following the
final eoc in the file (or to the byte following the
preamble, if there are no characters); it can be
used to locate the beginning of xxx commands
that might have preceded the postarnble. The ds
and cs parameters give the design size and check
sum, respectively, which are exactly the values
put into the header of the TFM file that META-
FONT produces (or would produce) on this run.
Parameters hppp and vppp are the ratios of pixels
per point, horizontally and vertically, expressed as
scaled integers (i.e., multiplied by 216); they can
be used to correlate the font with specific device
resolutions, magnifications, and "at sizes." Then
come min-m, max-m, m i n x , and max-n, which
bound the values that registers m and n assume in
all characters in this GF file. (These bounds need
not be the best possible; max-m and min-n may, on
the other hand, be tighter than the similar bounds
in boc commands. For example, some character
may have min-n = -100 in its boc, but it might
turn out that n never gets lower than -50 in any
character; then min-n can have any value < -50.
If there are no characters in the file, it's possible to
have min-m > max-m and/or min-n > max-n.)

6. Character locators are introduced by char-loc
commands, which specify a character residue c,
character escapements (dx, dy), a character width w,
and a pointer p to the beginning of that character.
(If two or more characters have the same code c
modulo 256, only the last will be indicated; the
others can be located by following backpointers.
Characters whose codes differ by a multiple of 256
are assumed to share the same font metric infor-
mation, hence the TFM file contains only residues
of character codes modulo 256. This convention
is intended for oriental languages, when there are
many character shapes but few distinct widths.)

The character escapements (dx, dy) are the
values of METAFONT's chardx and chardy pa-
rameters; they are in units of scaled pixels; i.e.,
dx is in horizontal pixel units times 216, and dy
is in vertical pixel units times 216. This is the
intended amount of displacement after typesetting
the character; for DVI files, dy should be zero, but
other document file formats allow nonzero vertical
escapement.

The character width w duplicates the informa-
tion in the TFM file; it is a fix-word value relative
to the design size, and it should be independent of
magnification.

The backpointer p points to the character's boc,
or to the first of a sequence of consecutive xxx or
yyy or no-op commands that immediately precede

the boc, if such commands exist; such "special"
commands essentially belong to the characters,
while the special commands after the final character
belong to the postamble (i.e., to the font as a
whole). This convention about p applies also to
the backpointers in boc commands, even though it
wasn't explained in the description of boc.

Pointer p might be -1 if the character exists
in the TFM file but not in the GF file. This unusual
situation can arise in METAFONT ~ u t p u t if the
user had proofing < 0 when the character was being
shipped out, but then made proofing > 0 in order
to get a GF file.

7. The last part of the postamble, following the
post-post byte that signifies the end of the character
locators, contains q, a pointer to the post command
that started the postamble. An identification byte,
i , comes next; this currently equals 131, as in the
preamble.

The i byte is followed by four or more bytes
that are all equal to the decimal number 223 (i.e.,
'5'37 in octal). METAFONT puts out four to seven
of these trailing bytes, until the total length of the
file is a multiple of four bytes, since this works out
best on machines that pack four bytes per word;
but any number of 223's is allowed, as long as there
are at least four of them. In effect, 223 is a sort of
signature that is added at the very end.

This curious way to finish off a GF file makes
it feasible for GF-reading programs to find the
postamble first, on most computers, even though
METAFONT wants to write the postamble last.
Most operating systems permit random access to
individual words or bytes of a file, so the GF reader
can start at the end and skip backwards over the
223's until finding the identification byte. Then it
can back up four bytes, read q, and move to byte q
of the file. This byte should, of course, contain the
value 248 (post); now the postamble can be read,
so the GF reader can discover all the information
needed for individual characters.

Unfortunately, however, standard PASCAL does
not include the ability to access a random position
in a file, or even to determine the length of a file.
Almost all systems nowadays provide the necessary
capabilities, so GF format has been designed to work
most efficiently with modern operating systems.
But if GF files have to be processed under the re-
strictions of standard PASCAL, one can simply read
them from front to back. This will be adequate for
most applications. However, the postamble-first ap-
proach would facilitate a program that merges two
GF files, replacing data from one that is overridden
by corresponding data in the other.

