Macros

Harnessing $\mathrm{TEX}_{\mathrm{E}}$ to Compute Third Root of Unity Primes

Klaus Thull*
mahīlatā samāja

This image, showing the primes of $\mathbb{Z}(\sqrt{-\overline{3}})$, up to norm 1000, was done by another "useless" macro set inspired by the \primes and the \point examples out of The TEXbook.
Mathematics: $\mathbb{Z}(\sqrt{-3})$ consists of all numbers of the form $(x+y \sqrt{-3}) / 2$ where x and y are rational integers, and $x+y$ is even. These numbers may also be expressed as $a+b(1+\sqrt{-3}) / 2$ where a and b are rational integers. We need this later.

In $\mathbb{Z}(\sqrt{-3})$, there exists a Euclidean Algorithm. Thus, even as with the rational integers, there is a divisor theory, and prime numbers. The primes, instead of listing them as numbers, are mapped onto points of a Euclidean plane and plotted.

Any pair of numbers $q+r \sqrt{-3}$ and $q-r \sqrt{-3}$ is said to be conjugate. Their product is rational and is called their norm. The norm of a $\mathbb{Z}(\sqrt{-3})$ integer is a rational integer.

Two numbers of $\mathbb{Z}(\sqrt{-\overline{3}})$ are associated if their quotient is a unit. The units are the powers of $(1+\sqrt{-3}) / 2$. There are six different units, arranged in a regular hexagon. Hence for each number there are six associates. The set of associates of a number may be equal to their conjugate, or disjunct. Yet in any case, their union obeys the D_{6} (snow crystal) symmetry.

Each natural prime gives rise to a set of primes in $\mathbb{Z}(\sqrt{-3})$ which so obeys the D_{6} symmetry. There are three cases:

[^0]- The inert case: The natural prime $2+3 k$ is also prime in $\mathbb{Z}(\sqrt{-3})$. There is one self-conjugate set of six associates.
- The split case: The natural prime $1+3 k$ is a product of two $\mathbb{Z}(\sqrt{-3})$ primes conjugate but not associate. There are two disjunct conjugate sets of six associates each.
- The ramified case: The natural prime 3 is an associate of a square of a $\mathbf{Z}(\sqrt{-3})$ prime. There is one self-conjugate set of six associates.
Macros: This describes how the image is done in TEX. The macros listed are clarified somewhat. All the \new... and the space gobblers are omitted as well as a few of the lowest level functions.
The outer main call: Note how the three different cases are handled.
\backslash def \backslash primes\# $1\{\backslash$ plot \backslash @ne\@ne $\%$ ramified \ri=7\rid=6\ru=\#1 \% split
\let \backslash primeaction=\splitprimeaction \backslash primesexecute \plot\tw@ \backslash © \% inert \isqrt $\backslash r u \backslash r u=\backslash c s q r t \backslash r i=5$ \let \backslash primeaction=\inertprimeaction \primesexecute\}
Natural Primes: We compute the natural primes of the residue class given by \ri mod \rid in a range of numbers:

```
\def\primesexecute
    {\ifnum\ri>\ru\let\next=\relax
    \else\isitprime\ri\advance\ri by\rid
    \let\next=\primesexecute
    \fi\next}
```

Here is the primality test for one number. It is very simple: try division by 2,3 , and the residue classes 1 and $5 \bmod 6$ until $\sqrt{\# 1}$ or residue 0 . Note that $\backslash z @, \backslash o n e, \backslash t w @$ etc. are TEX's constants for $0,1,2 \ldots$

```
\def\isitprime#1{\pc=#1\isqrt\pc
        \pl=\csqrt
        {\global\primetrue}
        \pt=\tw@ \tryprime \pt=\thr@Q
        \tryprime \pt=\fiv@ \trynext
        \ifprime\primeaction\fi}
\def\trynext{\let\next=\relax
        \ifnum\pl<\pt\else
        \ifprime \let\next=\trynext
        \tryround\fi\fi\next}
\def\tryround
        {\tryprime \advance\pt by \tw@
        \tryprime \advance\pt by \f@ur}
\def\stateprimefalse
        {{\global\primefalse}}
```

```
\def\tryprime\{\rem\pc\pt
    \ifnum \wa=\z@\stateprimefalse\fi\}
\def\splitprimeaction\{\starter\pc\}
\(\backslash d e f \backslash i n e r t p r i m e a c t i o n\{\backslash p l o t \backslash p c \backslash z @\}\)
```

Third Root of Unity Prime: For each split prime p in \mathbf{Z}, there is exactly one prime in $\mathbf{Z}(\sqrt{-3})$

$$
a+b \frac{1+\sqrt{-3}}{2}
$$

with a, b rational integer, $0<b<a$ whose norm is p. To find this prime, we solve the diophantine equation

$$
n=a^{2}+a b+b^{2}-p=0
$$

The algorithm used here is $O\left(p^{1 / 2}\right)$ yet cheap as such, and fast* for numbers $<10^{15}$: Choose a fitting octant of the conic and start traveling at the concave side: $\left.\quad(a \leftarrow\lfloor\sqrt{p}\rfloor ;\rangle b \leftarrow 0 ;\rangle n \leftarrow a^{2}-p\right)$
\def \backslash starter\#1\{\cn=\#1
$\backslash i s q r t \backslash c n \backslash c a=\backslash c s q r t \backslash c b=\backslash z \mathbb{C}$
\cn=\ca\multiply\on by\ca
\advance $\backslash c n$ by-\cx
\onestep\}
$\backslash d e f \backslash o n e s t e p\{\backslash i s i t \backslash i f n u m \backslash c a>\backslash c b$ \oneadvance\let\next=\onestep \else\let\next=\relax\fi\next\}
\def \oneadvance\{\ifnum\cn< $\backslash \boldsymbol{z Q} \backslash \mathrm{bp}$ \else\bpam\fi\}
weave out...

$$
(n \leftarrow n+a+2 b+1 ;\rangle b \leftarrow b+1)
$$

$\backslash d e f \backslash b p\{\backslash a d v a n c e \backslash c n$ by $\backslash c b$
\advance \cb by \@ne \advance\cn by \cb \advance\cn by \ca\}
and in: $(n \leftarrow n-a+b+1 ;\rangle a \leftarrow a-1 ;\rangle b \leftarrow b+1)$
$\backslash d e f \backslash b p a m\{\backslash a d v a n c e \backslash c b$ by $\backslash @ n e$
\advance\cn by \cb \advance\cn by -\ca
\advance\ca by -\@ne\}\relax
on solution...
$\backslash d e f \backslash i s i t\{\backslash$ ifnum \cn=\z@\ifnum\ca<\cb \else\action\fi\fi\}
do something about it:

\def $\backslash a c t i o n\{\backslash p l o t \backslash c a \backslash c b\}$

Plotting the primes: On obtaining one solution, we now compute all the associates and conjugates, thereby unskewing the coordinates such that the numbers in question are expressed as

$$
\frac{x+y \sqrt{-3}}{2}
$$

and \backslash point the dots. This way, we retain integral coordinates. Yet, scaling y-unit by $1.7 \approx \sqrt{3}$ while

[^1]\pointing yields a surprisingly close approximation to a true Euclidean mapping.

```
\def\plot#1#2{\ifnum#2=\z@\xa=#1
```

The inert case:

```
    \point{\xa}{\xa}\point{-\xa}{\xa}
    \point{\xa}{-\xa}\point{-\xa}{-\xa}
    \multiply\xa by \tw@
    \point{\xa}{\z@}\point{-\xa}{\\z@}
\else\ifnum#2=#1\xa=#1
```

The ramified case:
\advance $\backslash x a$ by \xa
\backslash point $\{\backslash z @\}\{\backslash x a\} \backslash p o i n t\{-\backslash z @\}\{-\backslash x a\}$
\advance $\backslash x a$ by \#1
\point $\{\backslash x a\}\{\# 1\} \backslash$ point $\{-\backslash x a\}\{-\# 1\}$
\point $\{-\backslash x a\}\{\# 1\} \backslash$ point $\{\backslash x a\}\{-\# 1\}$
\else
The split case:

```
\xa=#1\ya=#2\yb=\ya\advance\yb by-\xa
\xb=\xa\advance\xb by \ya
\xc=\xa\advance\xc by\xb
\xd=\ya\advance\xd by\xb
\point{\xc}{\ya}\point{-\xc}{-\ya}
\point{-\xc}{\ya}\point{\xc}{-\ya}
\point{\yb}{\xb}\point{-\yb}{-\xb}
\point{-\yb}{\xb}\point{\yb}{-\xb}
\point{\xd}{\xa}\point{-\xd}{-\xa}
\point{-\xd}{\xa}\point{\xd}{-\xa}
\fi\fi}
```

What else: Since no more $\mathbb{Z}(\sqrt{-3})$ mathematics are to be reported (and to keep this short) I left out the \point macro which follows the one recorded in the "Dirties" section except the y-unit scaling. Likeso the \rem macro, and the \isqrt (integral square root) which uses the Newton algorithm.

Exercise: Devise a set of TEX macros plotting this image:

[^0]: * $/$ / Dittrich, Zeughofstraße 23,

 D-1 Berlin 36, Germany

[^1]: * I might have exited the algorithm upon the first solution found, speeding it up even more. This is left as an exercise.

