
TUGboat, Volume 8 (1987), No. 2

Automated Index Generation for

Richard L. Aurbach
Monsanto Company
St. Louis, Missouri

Abstract

I 4 w includes partial support for the generation of an Index in a document. It contains
commands which enable index terms and the pages on which they appear to be captured
in an auxiliary file. However, special processing (external to IPW itself) is required to
translate this information into a pleasingly-formatted index.

The I d x w program provides this additional processing. and generates a file of I P W
source which may be included in a document to produce the desired index.

This paper describes how I d x w provides a full range of services for index generation and
discusses issues related to the development of programs which provide auxiliary processing
for I P W documents.

The I d x w Project

The I-FI'EX text formatting program is an extremely versatile tool for the generation of high-quality
documents. However, its handling of an Index is incomplete. I4QjX provides the \index command
which (in conjunction with the \makeindex command) generates an auxiliary file containing index
terms and references to the pages on which the terms appear. However, it is left to the writer to
develop this information into an appropriately formatted Index.

As part of a project to develop new document styles, I became interested in the automation of this
process of Index generation and developed the I d x w program1 to complement the capabilities of
I P w . The I d x w project had several goals:

0 to provide a fully-automated mechanism for Index generation which produces an Index with
the same level of quality as the I4W document in which it appears.

0 to help make indexing sufficiently easy to encourage authors to build effective and helpful
indices into their documents.

0 to provide a full set of indexing features, so that even complex indices (such as the Index of
The m b o o k 2) could be generated.

'The 1dxT~X program has been submitted to both the Users Group and to the DECUS Library for distribution
t o interested parties. The distribution includes a Users Guide, which describes how to use the program, an executable
VAX/VMS image, and complete sources in the C language. Since the program uses VAX/VMS services, it will only
run in that environment. However, I believe that it could be ported t o other environments with modest effort.

2Knuth, Donald E., The Q X h k , Addison-Wesley and the American Mathematical Society, 1984.

TUGboat, Volume 8 (1987), No. 2

to provide support for all of the indexing capabilities inherent in I4W. such as three-level

indexing, without requiring any additional enhancements to I4W itself.

to include support for the generation of a Master Index fcr a set of documents.

The Indexing Problem

Generating an index in the I4w context provides a number of interesting challenges.

Index Levels IPW supports a three-level index (items. subitems, and subsubitems).
However. the \index command accepts only one argument. It is necessary

to adopt a convention within the text of its argument to specify the level

of the term being indexed. In I d x w . the > symbol is used to separate
the item from the subitem and the subitem from the subsubitem.

Spelling

Page Ranges

Obviously, the index must appear in alphabetical order. However, it must

be possible to include IP'I)@ commands within an index term. to optimize

the visual appearance of the Index. That is. an author should be able to

specify "\index{(\em Special\/) Commands)", for example, and have

the index item appear as expected. This means that I d x w must under-

stand I4W syntax, so that the term can be properly placed in alphabetic
order.

If an item is indexed on a series of consecutive pages. the index entry

should display the range of pages, rather than a list of consecutive num-

bers. That is, an item which is indexed on pages 11. 12. and 13, for

example, should appear in the index with a page reference of 11-13.

Cross References It is not uncommon to see an item in an index which refers to one or more

other items in the index. To support this. syntactic conventions in the

\index command and special processing are necessary.

Master Index To generate a Master Index. the program must be able to process more

than one auxiliary file, and keep track of which volume of the volume set

is associated with each item. The output of the program must include

labels which identify the volume associated with each index item.

The following sections provide insights into how each of these issues was resolved in Idx'I)@.

Indexing Conventions

The IPW \index command takes a single argument. In an automatic index generation environ-

ment, that argument represents the only mechanism by which the author can communicate informa-

TUGboat, Volume 8 (1987), No. 2 203

tion to Idxm about how the term should be handled. To allow for the multitude of index features

supported, it was necessary to impose a set of conventions on the use of this command.

Two principles were important to the design of these conventions:

1. The conventions should be (as much as possible) mnemonic, so that they are easy to remember.

2. The conventions should be easily recognizable as such. That is, the program must be able

to distinguish unambiguously between characters which are used as part of a convention and

characters which are part of the term being indexed.

Conventions were chosen which are not valid IPm syntax - they would generate I4w errors if

they occurred naturally. Since I d x w is sensitive to IPm syntax, this assures that there will be
no cases in which Idxw confuses a part of its conventions for legitimate text entry.

The following conventions are used in Idxw.

Level Separators The > character is used to separate items from subitems and subitems

from sub sub item^.^ For example,

specifies an index entry with an item of "Aaa". a subitem of "Bbb", and

a subsubitem of "Ccc" . Of course,

are also acceptable.

Page Reference
Highlights

The first character of an index entry may be used to specify special for-
matting for its page reference. The following table lists the capabilities
which are available.

Format I Meaning I Example
\index{^Foo} / boldface 1 Foo, 11

\index{-Foo) / underline / Foo, 11
\index{-Foo} I i t a h I Foo, 11

\index(#Foo} / "and followinn" 1 Foo, llff

Cross References Cross references are specified using the & character. For example,

will generate a cross reference of the form

"Aaa, see Bbb"

3Note that the RUNOFF text formatting system uses the same convention. Since we expected to convert a number
of RUNOFF documents, this choice was obvious.

TUGboat, Volume 8 (1987), No. 2

Master Index

Cross reference processing allows for a combination of real page references
and cross references, so that a combination of entries such as

will generate

"Aaa, 11: see also Bbb"

Master index processing uses a new type of auxiliary file to provide the
information I d x w needs to understand which document indices to use
when building the Master Index and what labels to use when displaying
information from different volumes. This will be discussed in more detail
below.

Data Structures

The Index of a large document or the Master Index of a large document set may be quite extensive.
To avoid limitations on the number of items which I d x w could handle. all internal data structures
are allocated from dynamic memory. Therefore, the size of an Index is limited only by the user's
virtual page quota.

Since the three-level structure of the index implies a tree-like organization, the basic data structures
selected for internal storage of index information in I d x w were linked lists. While linked lists

are not optimally efficient in this application, their simplicity compensates for the minor loss of
performance.4

The basic data structure for each index item, subitem, or subsubitem is called a XODE. Using the
notation of the C language, a NODE can be defined as

typedef struct node

C
struct node *link;

struct dsc$descriptor item;

struct dsc$descriptor spell;

struct node *subhead;

struct pgnode *pghead ;

struct pgnode *cfhead;

} NODE;

In this structure, link is the forward linkage pointer to the next node in the list; i t e m is a VAX/VMS
dynamic string descriptor5 which describes the text string associated with the index item; and spell

is another string descriptor for the spell-string. The spell-string is used when alphabetizing index

4Since I d x w is not run often, its cost is an inconsequential fraction of the total cost of generating a document.
'VAX/VMS dynamic strings were used (rather than the ASCIZ strings which are more natural in a C-language

implementation) because the VMS services which work with them handle all details of dynamic memory allocation
and deallocation.

TUGboat, Volume 8 (1987), No. 2 205

entries and helps resolve the spelling problems discussed previously. It is discussed in more detail
below.

The subhead is the listhead for a linked list of NODEs for any subitems associated with this index
item. The recursive nature of this data structure made handling the three levels of indexing simple.

The pghead and cfhead variables are listheads for linked lists of PGXODE structures. Each PG-
NODE structure includes information about a single reference to the particular index entry. The list
chained from pghead contains numeric page references, while the list chained from cfhead contains
cross references.

Using C language notation, a PGNODE has the following structure

typedef struct pgnode

struct pgnode *link;

struct dsc$descriptor *vol;

struct dsc$descriptor page-dsc;

char highlight;

) PGNODE;

Once again, l ink is the forward linkage pointer for the linked list. The vol variable is used in Master
Index processing to point to the dynamic string descriptor for the label to be associated with the
volume from which the reference came. The page-dsc describes the page reference string, while
highlight is a flag used to indicate what type of page reference highlighting is associated with this
page reference.

One virtue of this type of internal data organization is that each distinct item, subitem. or subsub-
item uses only a single NODE structure. If the entry has a number of page references, then one
PGNODE structure (which is fairly small) is used for each. If more than one index reference occurs
on the same page. only a single PGNODE is allocated. This approach conserves dynamic memory.

NODEs are linked together in alphabetical order (by spell-string). PGNODEs for numeric page
references are linked together in the order they appear in the auxiliary file produced by I P W ,
which automatically puts them into numerical order. PGNODEs for cross references are linked
together alphabetically. This means that the internal representation of the index is built in sorted
order, simplifying back-end processing.

Spell Strings and Alphabetization

As discussed previously, putting index entries into alphabetical order is a complex task, because
the entry may contain IP'Q$ commands which are meant to enhance the visual appearance of the
index, but which must not be included when the term is placed in alphabetical order. In I d x W ,
the concept of a spell-string was introduced to handle this problem.

The basic idea is that each NODE of the internal data structure contains descriptors for two copies
of the index entry - the i t e m and the spell-string.

TUGboat, Volume 8 (1987), No. 2

0 The item string contains the original form of the index entry. including all I P W commands.

It is used to generate the formatted output and is not used when placing the entry in proper

alphabetical order.

The spell-string originally contains a copy of the index entry. However, during spelling pro-

cessing, it is modified to remove everything which should not be included when the entry is

placed in alphabetical order. It is not used for any other purpose.

Therefore, spelling processing consists of a number of steps which recognize various forms of IP'I'EX

syntax and remove them from the spell-string. After this has been done, the spell-string is in a form

suitable for alphabetizing the index entry. while the item string remains untouched.

In some special documents, it may be desirable to place mX or I P W commands themselves in

the index.6 To accommodate this possibility, spelling processing skips any text contained within a

\verb or \verb* construct. This means, for example, that

\indexC\em Command)

will be treated as if it were spelled as "Command", but

\index(\verb+\em+ Command)

will be treated as if it were spelled as "\em Command"

The spelling processing performs the following operations (in order)

0 Accents are processed. All of the special characters associated with the accents are removed.
For example. in the spell-string, se\-(n)or is translated to senor.

Emphasis commands are removed from the spell-string. Examples of emphasis commands are

\rm, \bf , \ l a rge , etc.

0 Grouping and mode commands are removed from the spell-string. That is. C,), and $ are re-

moved. However, \(, \), and \$ are retained. since they do not represent grouping commands.

Backslashes are removed from the spell-string. The logic which skips processing in \verb and

\verb* constructs prevents the "\" in "\verb3' from being removed.

\verb and \verb* constructs are cleaned up. For example, "\verb+foo+" is translated to

'<f 00,: .

The spell-string is converted to upper case, all unnecessary whitespace is removed, and a few

minor corrections are made to handle special cases.

For example, the spell-strings of index items which begin with non-alphanumeric characters

are adjusted so that all such terms will appear in the index before any items which begin with

any alphanumeric character.

60bvious examples of this axe the indexes of documents about text processing.

TUGboat, Volume 8 (1987), No. 2 207

Also, special logic is used to assure that any index term which begins with a \verb or a \verb*

is placed in the proper place in the index. This includes adjustments to the spell-string which

prevent references for items such as "input" and '.\verb+\input+" from being confused.

This approach has proven to be effective in developing an index which uses I4W commands liberally,

but retains proper alphabetical order. There are, however, aspects of spelling processing which can

be debated.

In The W b o o k . native T ' X commands are displayed with a leading asterisk, but are alpha-

betized as if the asterisk were not present. I d x w does not currently handle this case.

0 I d x w is case blind. That is. \index{Large) and \index{large) are considered two in-

stances of the same item.' The case displayed in the index matches that of the first item seen.
This is usually desirable - it prevents some typographical errors from generating unwanted

index entries. However. there may be some cases in which case sensitivity would be preferred.

Page Ranges

Another issue which appears simple, but has a number of interesting complications is the handling of

page ranges. Indeed, the simplest case (converting references on pages 11. 12, and 13, for example.

to a reference to "11-13") does not present any significant difficulties. However. the general case is

not that simple.

Since we support page reference highlighting, it is necessary that the system recognize that

11. 12, and 13 constitute a page range, but that 11, 12, and 13 must be handled differently.

A reference such as "20fP' represents a different type of page range. If a term is also indexed

on page 19, then the index entry should read "19fF' rather than "19. 20fP'.

Some document styles use chapter oriented (or other complex) page numbers. The algorithm

which determines whether pages are adjacent must be able to handle page numbers such as

"5-2" or "Glossary-4".

In a Master Index context, the algorithm must also be able to determine that a reference to

page 11 from Volume I is not adjacent to a reference to page 12 in Volume 11.

It turns out that solving these complications is unreasonably difficult during the initial building of

the internal data structures. Therefore, a special processing step is used to handle page ranges.

For each linked list of page references, an array of special data structures8 is dynamically allocated

and the information from the linked list is moved to the array. Each page reference text string is

parsed into a volume string. a chapter string (if any), a page number, and a highlight flag. Two pages

are adjacent if they have the same volume. chapter. and highlight. and consecutive page numbers.

71n fact, any items which have the same spell-string, according to the syntax rules above, will be considered instances
of the same item. The displayed text will be that of the first index reference seen.

8 ~ y thanks to my colleague: Donald R. Gurnmow, for suggestions concerning this internal array.

208 TUGboat, Volume 8 (1987)) No. 2

Page references which are parts of ranges are flagged as the beginning, middle, or end of the range.
Since the "and following" notation is handled internally as a highlight, it is relatively easy to handle
special cases involving this type of page reference within a page range.

Once this analysis is complete and one or more page ranges is discovered in the list of page references,
the initial list is deleted and a new page reference list is built based on the information in the array.
Since this approach concentrates all of the page range logic in one place, the routines which format
the output require no special logic. Also, given the amount of information stored in the array, it is
trivial to provide special touches, such as formatting a range of simple page numbers as "11--13",
while handling a range of complex page numbers as "2--6 t o 2--10".

Other Features

A number of other features of the program deserve some mention

Cross References Handling cross references turned out to be surprisingly easy, once I real-
ized that they should be segregated from page number references in their
own linked list. This allowed multiple cross references to be listed in al-
phabetical order, and eliminated problems associated with mixtures of
page number references and cross references for the same term.

At present, I d x m does not check to verify that an index entry actually
exists for each cross reference, but this desirable feature could be added
without great difficulty.

Master Index

Output Format

Some special processing is required to generate a Master Index.

0 There must be a mechanism to inform Idx'l$X of which auxiliary
files to process to build the Master Index (and in which order to
process them). This problem was solved by creating a new auxiliary
File (an . mdx file) which lists the . idx files to be processed. A special
qualifier to the IdxTeX command is used to specify that Master Index
processing is to be performed.

0 For the Master Index to be useful, it is necessary that the formatted
index include labels which identify the volumes from which the page
references come. The .mdx file is the obvious place for these labels
to be defined. As noted above, a pointer to these label strings is
included as part of the PGNODE structure, so that the labels may
be easily included in the output.

Since the internal data structures contain all of the information needed
to generate the Index, creation of the output file is a simple matter. All
that is necessary is to walk the linked lists, generating appropriate I 4 T)
code as we go.

The most interesting problem which occurs during output generation con-
cerns the headings which precede the index entries which begin with a new
letter of the alphabet. In the first version of the program, the heading

TUGboat, Volume 8 (1987), No. 2 209

for a new letter could appear at the bottom of one column, with the first

entry for that letter appearing at the top of the next column. This was

clearly undesirable.

To solve this problem. I defined a new I P W indexing command

\makea t le t te r

\def \indexhead#1#2#3{\par\if @nobreak \everypar{)

\else\addpenalty{\@secpenalty)\addvspace{#l~\fi

\begingroup #3\par \endgroup \@xsect{#2))

\makeat o ther

I d x w includes this code at the beginning of every output file it gener-

ates.

This macro was derived from IPl&X1s section processing logic, where the

same type of orphan problem exists. The first parameter is the amount of

space to leave before the heading. The second parameter is the amount
of space to leave after the heading. The third parameter is the text used

to generate the heading. This macro uses \nobreak. \everypar. and

\clubpenalty to produce the desired effect.

Summary

The I d x w program has been used to generate indexes in a substantial number of documents at

Monsanto. We have found that its indexes are effective and attractive - well in keeping with the

general quality of the documents in which they appear. It has no difficulty handling large indexes
- in fact, I estimate that a document containing 25.000 \index commands should be well within

the virtual page quotas normally found on VAX/VMS systems optimized for scientific computing
environments.

While I d x w has basically met its design goals. a simple change in the IP7'E;\i document styles

(which was beyond the scope of this project) would allow it to do even more. At the beginning

of the start of the Index to The W b o o k . for example, there are several paragraphs of one-column

text which describe how to use the Index. The current definition of \begin(theindex) precludes

this type of usage. I believe that a simple change to the definition of this environment (taking

advantage of the optional argument of the \twocolumn command) would contribute to even better,
more effec tive indexes.

Of course, I d x w fails to deal with the most difficult part of building an Index that communicates

effectively - it does not insert the \index commands in the document. I leave that part of the

problem to the A1 experts.

