
TUGboat, Volume 8 (1987), No. 2

Using PostScript with ll&X

Alec Dunn, University of Sydney*

Several articles in TUGBOAT have demonstrated

methods of drawing simple graphics using dots and

horizontal or vertical rules. UTEX provides a com-
plex \ p i c tu re environment which uses special fonts,

containing arcs and diagonal lines, to draw more

elaborate figures. These methods have the advan-

tage of portability because they use only facilities

common to all Tj$ implementations and most dvi
processors. But they have the disadvantages of lim-

ited scope, difficulty of use, Tf l memory limitations,

and lack of an interface to other graphical systems.

A more versatile approach is to link a graphical

language, such as Postscript, into TEX, using the

\ spec i a l command. A recent TUGBOAT article [I]
describes this approach, and several other sites have

used this method.

This article describes work on these lines at the
University of Sydney. Some small improvements on
the methods of [I] make the 'lJQ-Postscript inter-
face simpler and more foolproof for users. Also, the

use of this system with a general-purpose graph-

ics package and with a specially-written Macintosh

PostScript generator are discussed.

1 The PostScript language

This section briefly describes the features of

PostScript relevant to its usage with m, for the
benefit of readers unfamiliar with the language.

PostScript is a language for programming two-
dimensional graphical and typesetting operations. It

is independent of any brand of printer, and it has

been implemented on several models of laser printers
and typesetters. Unlike TI$, PostScript is a propri-
etary product, owned by Adobe Systems Incorpo-

rated. The following small example demonstrates

the operation of PostScript:

'Comments should be sent to A Dunn, School of Electrical

Engineering, University of Sydney, NSW 2006, Australia, or

via ACSNET to alecd@facet.ee.su.oz.

newpath 113 92 moveto

116 96 l i n e t o 113 100 l i n e t o

110 96 l i n e t o closepath s t roke

To understand this example you should know that

commands apply to the numbers preceding them,

and you can safely ignore the newpath and s t roke

commands. The example code draws a diamond
shape (0) starting from coordinates (113,92) and

with sides of length 5 units.

Note that we haven't specified what the units are.

PostScript lets you define and re-define your own

units, so the diamond could be drawn at any size by

suitable definition of the units. This is one of the

most important features of PostScript (for present

purposes) - everything, including text, is perfectly
scalable. Similarly, the entire coordinate system can

be shifted at any time, so the point (113,92) can be
placed anywhere on the page.

Other valuable features of Postscript are demon-
strated by the example. Nowhere in an ordinary
PostScript program is there any reference to the

printing hardware: the example will produce the
same results on a 300 dots/inch laser printer and on
a phototypesetter; raster conversion is performed in
the printer. And the code is entirely in visible ASCII

characters and so is fully portable and communicable
between different computers and operating systems.
PostScript is just as portable as TEX.

The natural way to combine and PostScript is to
use the 'I$$ \ spec i a l command to pass PostScript
code to the dvi processor (TEX itself has no use for

PostScript, since T&X is only concerned with placing
objects on pages, not with actually imaging those

objects).

To obtain a PostScript graphic, using our system,
the TEX user puts a command of the form

172 TUGboat, Volume 8 (1987). So . 2

\special(PF filename height width3

into his or her TEX file at the point at which the

lower left corner of the graphic is to be placed (which

may be inside a float). The P F is just a keyword,

chosen by us, to distinguish this kind of \ special

command from any others which may be used (using
a keyword for this purpose is recommended in The

W B o o k page 228). The PostScript code is in file

filename - we don't insert the PostScript code it-

self because it tends to be verbose and the \ special

command uses 7&X memory. The height and width

arguments define a bounding box for the graphic.

(Historical reasons compelled the unfortunate choice
of height, width order instead of Postscript's x , y or-
der). An example of this form of \ special command
is :

\special{PF diamond 4mm 3mm)

which is how the diamond example above was drawn.

The \ special command' occupies no height or

width (since can't interpret its contents), so in

practice it must be supplemented by glue commands,
for example:

\hbox t o width

C\vrule h e i g h t height w i d t h Opt

\specialiPF filename height width)\hf ill

Of course, this can be simplified for users by a suit-
able macro.

This is the full extent of W ' s role - most of
the work in combining TEX and PostScript is per-
formed by the dvi processor. In this case the proces-

sor, called Dvi/PS, was written by us for Vax/VMS

machines and is proprietary to the University of Syd-
ney. If you have the source code t o a different dvi

processor you may be able to adapt it to handle the
\ spec ia l command (naturally, it must be driving a

PostScript device!).

When Dvi/PS encounters a \ spec ia l command, it
already knows the coordinates of the lower left corner

of the graphic (by the same mechanisms by which it

knows where text is to be placed); the P F keyword

and the filename, height, and width arguments follow
in the dvi file. Dvi/PS then scans the PostScript

file t o find its bounding box, which, if the file con-

forms to the Adobe structuring conventions [2] . will
be given in a specially-formatted comment line.

Knowing the bounding box of the graphic in its
own PostScript coordinate space, and the desired

location and bounding box in the page's space,

Dvi/PS computes a suitable transformation matrix

and sends this to the printer before sending the con-

tents of the Postscript file. This relieves the user

from having to know anything about the size of the
PostScript graphic, or about its coordinate system

- the graphic will always appear where the user

asked for it and at the size he or she asked for.

It is possible, even likely, that the user-specified

bounding box and the graphic's PostScript bound-
ing box will have different aspect ratios. PostScript

allows different scale factors horizontal!^ and verti-
cally, so the graphic could be fitted exactly to the

user's bounding box. But most users don't want

their graphics distorted in this way, so Dvi/PS com-
putes only one scale factor, according to the limiting
dimension (horizontal or vertical), and applies that

to both dimensions, adjusting the origin transfor-
mation so that the graphic will be centered in the
non-limiting dimension.

An example may make the whole process clearer.
Suppose the W file contains

\special{PF c a t 180pt 200pt)

so the user is asking for a graphic of 200pt x 180pt (in
normal x , y order). Also suppose the Postscript file
c a t has a bounding box of (llO,50) to (190,140), af-
ter conversion to TEX points. The PostScript width

is 80 pt and height 90 pt. The limiting dimension

is the vertical, allowing a scale factor of 2x , which
leaves 40 pt of white space to be taken up in the hori-
zontal. So Dvi/PS emits PostScript code to shift the
origin horizontally by -110 +40pt and vertically by
-50 pt and then to magnify by 2. The graphic, as

printed, will be 180pt high and 160pt wide, hori-

zontally centered in its bounding box (see Figure 1).

If either dimension is given as zero in the

\ spec ia l command Dvi/PS ignores the correspond-

ing PostScript dimension in its scaling calculation

and doesn't center the graphic, leaving it left- or
bottom-justified. Combinations of zero and non-zero

arguments, in suitable macros, give most of the fa-

cilities users want.

It is not an error for the PostScript code to draw
outside of its supposed bounding box, since users

TUGboat, Volume 8 (1987). No. 2 173

Figure 1: cat

may want to achieve special effects this way. Dvi/PS

doesn't produce code t o clip the image, nor does it
draw the bounding box onto the page.

A PostScript file t o be used in a \special com-
mand should not depend on another such file, since
it is not known in what order Dvi/PS will process

them. Also, text should use only native PostScript

fonts, not downloaded fonts, which Dvi/PS may not

yet have loaded. In practice these are not serious
limitations.

4 Error handling

Of course, errors are possible: the PostScript file
may be missing, or it may not conform to the struc-

turing conventions and so not contain a bounding

box specification. Dvi/PS copes with such prob-
lems by leaving white space if the file is missing,

or not performing any coordinate transformation if
the bounding box is unspecified.

But it is impractical for Dvi/PS to attempt to

control errors in the PostScript file itself - once

Dvi/PS sends the PostScript file to the printer it

effectively hands over all control to that file. For the

purposes of this system we can define a well-behaved

PostScript file as one which leaves the printer in the

same state as it found it , except for the coordinate

system (which Dvi/PS always restores) and marks

added to the page (which was the purpose of send-

ing the file). For example, a file which executes the

PostScript showpage command (which prints and

ejects the s age) is not well-behaved.

Unfortunately, few Postscript files are well-

behaved! Most software with PostScript output aims
to produce a complete specification of the final hard

copy, which is the purpose for which PostScript was

conceived, but here we are using it for "graphical

procedures". This problem is the major limitation

in using PostScript with T@ - to get well-behaved
PostScript has required writing our own software.

5 Sources of PostScript code

You can write PostScript code yourself with any text

editor, but this is impractical for graphics of any
complexity. At the School of Electrical Engineer-

ing we have extended our general-purpose graph-
ics package so that it can produce a well-behaved
Postscript file instead of driving a graphics device.
Most of the graphically-oriented software written in

the School in the last five years can now be used
together with m, and several theses and reports

have been printed almost entirely without cutting
and pasting.

Graphics produced by applying programs to data

are very useful in engineering, but we also need to
be able to just draw and have the drawing translated
into PostScript. MacDraw on the Macintosh is ideal
for simple engineering drawing, and MacPaint for
freehand drawing. But it is tricky to make the Mac-
intosh produce a PostScript file, and almost impossi-
ble to convert that file into well-behaved PostScript,
so we have written a program, Postscript from Mac,

which can convert MacDraw and MacPaint files di-

rectly into PostScript files suitable for inclusion in

TEX documents. (The cat example, above, was

drawn with MacDraw and converted by PostScript

from Mac into a PostScript file of about 1 Kbyte.)
PostScript from Mac has proved surprisingly pop-

ular with the academic staff of the School and has

revealed an unexpected demand for a means of easily

including good quality graphics into mY documents.

References

[I] H. Varian and J . Sterken, "MacDraw Pictures

in Documents", TugBoat, vol 7 no 1.

[2] PostScript Language Reference Manual,

Addison-Wesley, Reading, Mass. Appendix C,
pp 263ff.

