
TUGboat, Volume 8 (1987), No. 2

C An Introduction to SGML
W. W. Davis (Internal Revenue Service,

Washington, DC)
D Issues in Digital Typography

Richard Rubenstein (Digital Equipment

Corp., Hudson, MA)
E Introduction to Postscript - A Graphics

Solution
Yvonne Perry (Adobe Systems, Palo Alto,

CAI
F Document Databases and Technical

Publishing
Geoffrey James (Honeywell Information

Systems, Los Angeles, CA) under the

auspices and organized by the University

of Massachusetts/Boston and University of
California/Los Angeles Extension Programs

(to be confirmed)

Further Information

To obtain further information. request a form from

the Conference Organizer:

Paulene McKeever

Conference Management Services

P. 0. Box 5

51 Sandycove Road

D h Laoghaire
Co. Dublin, Ireland

($353-1) 452081

Telex: 30547 SHCN EI (Ref. Boole)

Please note that there is an early rate that applies

to all fees received by the Conference Organizer

before 1 September 1987. Reservations for accom-
modations must be made directly with the hotel

before 15 September 1987 to ensure availability;
a block of rooms has been reserved at a special
conference rate for participants. Details of all fees

and other arrangements will be on the form.

6th German TEX Meeting

On October 8th and gth. 1987, German T$$ Users

and other people interested in TEX will meet in

Munster (Westphalia) a t the University Computing

Centre.

For the first day we plan - for people who just
had their first contacts with m- in t roduc tory

lectures about installing m and using I4W and

other macro packages.

The second day we want to give information
about further developments related to m. Also.

we are going to deal with problems specifically

concerning the German language.

During both days demonstrations will be of-

fered on several Output Device Drivers and 'l$J

Implementations on workstations and PCs.

For further information. please contact:

W. Kaspar

Univ of Miinster

Computing Center

Einsteinstrafie 60

D-4400 Munster

Fed Rep Germany

Late-Breaking News

SGML and TEX

Lynne A. Price
Hewlett-Packard, Palo Alto, CA

T h e Standard Generalized Markup Language, SGML,

is defined in Internat ional S tandard 8879, published

i n October. 1986. T h i s paper gives a n overview

of SGML, discussing i ts relationship w i th other

text processing tools such as Thy, Pos t scr ip t , and

W Y S I W Y G systems. I t gives examples of applica-

t ions for S G M L . I t concludes wi th a descr ipt ion of

the w a y S G h f L and are used together i n one

particular env i ronment .

222 TUGboat, Volume 8 (1987), No. 2

What is SGML?

The Standard Generalized Markup Language (SGML)

is a notation for representing documents and mak-

ing their inherent structure explicit. Various forms

of automatic processing can be performed on doc-

uments coded in SGML; they can be formatted,

loaded into online databases, or analyzed for var-

ious linguistic properties. SGML is defined in

International Standard 8879.

SGML evolved from macro-based word-process-
ing and text-formatting tools. Like a macro

package, it encourages a writer to use descrzptzve

markup, identifying structures within a document,
rather than procedural markup. specifying process-

ing. For example, "this is a section heading" is

preferred to "center this line in boldface". As the

word "generalized" implies, documents prepared

with SGML can be processed in various ways. For
example. the same markup tags used to prepare

a book's index might also be used by an informa-

tion retrieval application to locate text relevant to

selected terms.

SGML views a document as a hierarchy of
structural elements. For example, a manual may be

composed of front matter, some chapters, optional

appendices, and an index. Similarly, a chapter may

be a series of sections, while a section is composed

of text and optional figures, tables, lists, and so on.

No finite set of structural elements can account

for the vast flexibility permitted in written texts.

SGML therefore provides features for defining types
of documents and then coding particular docu-

ments that belong to the defined types. Possible

document types include reference manuals. journal
articles, term papers, short stories, third-grade book

reports, memos, letters. and employee performance

evaluations. A document type is formally defined

with a document-type definztzon that itemizes the

structural elements permitted in documents of that

type and defines the contexts in which each element

can occur. Most document-type definitions are

prepared by a small group of individuals for many

more people to use with a large number of docu-

ments. Thus. most users of SGML are concerned

with creating and maintaining documents rather

than document-type definitions.

Document-type definitions frequently distin-
guish elements that are formatted in similar fashion.

For example, newly introduced terms and titles of

books may both be typeset in italics. However,
logically they are different structures. Markup that

distinguishes between them enables software that

supports glossary and bibliography maintenance.

Context-Sensitive Interpretation of Markup

The document-type definition can control context-

sensitive interpretation of parts of a document.

For instance, an asterisk may be interpreted as a

code for the multiplication symbol inside a math-

ematical formula but as a footnote indicator else-

where. Context-sensitive knowledge of valid docu-

ment structure also permits various abbreviations

of SGML constructs. called markup mznzmzzatzon.

If it is known. for example. that every chapter

begins with a chapter title. the SGML processor can

recognize the first words in a new chapter as the

title whether or not the writer has explicitly coded

them as such.
Most SGML markup consists of identifying the

beginning or end of structural elements. The most

common convention (which can be overridden) is to
mark the beginning of an element with the element

name enclosed in angle brackets and to mark the

end of an element similarly, but with the element

name preceded with a slash. These delimiters are

illustrated in the (deliberately verbose) example

shown in Figure 1.

This example assumes that the document-

type definition specifies rules for creating glossaries.

Glossaries in this context are assumed to have
titles and to contain multiple entries. Each entry

has a term followed by a definition. Definitions

may contain cross-references to other terms in the

glossary.
The document-type definition may also specify

context-sensitive text-entry conventions. For exam-

ple. glossaries may be defined so that the title and
terms never extend past the end of a line and that

entries are separated by blank lines. With these

definitions. SGML treats the example in Figure 2

exactly like the more complete forln in Figure 1.

Since SGML knows which document-type defi-

nition is being used. the start-tag <glossary> can

be omitted. The start-tag <title> is optional
because all glossaries must start with a title. The

end-tag < / t i t l e > is optional because the title can-
not extend for more than one line. The blank line

after the title is ignored because no text charac-

ters have been encountered to start the element

expected after the title. At the word "aardvark",

SGML recognizes that one or more start-tags have

been omitted. The start-tag <entry> is implied

since <entry> is the only element allowed after a

title. The start-tag <term> is then implied since

every entry begins with a term. The term can-

not extend past the end of the line, so the material
on the next line must be something else. Since every

TUGboat, Volume 8 (1987), No. 2

entry consists of a term followed by a definition, this

must be a definition and SGML infers a cdef ini-

tion> start-tag. The blank line after the definition

ends both the entry and the definition contained

within it. The end-tag </glossary> is implied by

the end of the input file.

SGML's knowledge of context can also be used

in some forms of error checking. Most TEX users can

sympathize with the user who inadvertantly omits

the closing brace after an emphasized phrase and

generates several pages printed in a boldface font

or who neglects to close an indented list and dis-

covers the rest of the document in narrow columns.

SGML, referencing the appropriate document-type
definition, knows that an emphasized phrase can-

not span multiple paragraphs and that an indented

list cannot cross a chapter boundary. When such

markup occurs, the effect can be limited to a single

paragraph or chapter and appropriate error mes-

sages issued. This context-checking is an inherent

property of SGML rather than something that must

be laboriously built into individual macros.

SGML and Other Tools

SGML is used with classes of related documents,

rather than one-of-a-kind texts. The language is

carefully and deliberately defined independently of

any application. The International Standard spec-

ifies possible input of SGML source files without

the corresponding output. Unlike TEX and various

what-you-see-is-what-you-get systems. the purpose

<definition>The first animal listed in a

dictionary.</definition>

<entry>

<\it Cat>\/)

<definition>A carnivorous mammal long domesticated and kept by

man as a pet or for catching mice (Webster's New

Collegiate Dictionary, 1973) .
<definition>

<entry>

{\it Dog\/)

<definition>A domesticated <xref>canine</xref>.</definition>

</entry>

. . .
</glossary>

Figure 1. Example of glossary data with full markup

Glossary of Animals

Aardvark

The first animal listed in a dictionary.

Cat

A carnivorous mammal long domesticated and kept by
man as a pet or for catching mice (Webster's New

Collegiate Dictionary, 1973).

Dog
A domesticated <xref>canine</xref>

. . .

Figure 2. Example of glossary data after markup minimization

224 TUGboat, Volume 8 (1987), No. 2

of SGML is not to determine how to arrange char-

acters on paper. Nor is SGML a page-description

language like Postscript. The purpose of SGML is
to describe the logical structure of a document in a

way that can be used by different processes.

Of course, individual uses of SGML have a par-

ticular goal, which may be document formatting or

page layout. Software to support these applications

from SGML can be written. The advantages of doing
so are the advantages of context-sensitive markup

described above and the ability to use the same

source file for other applications as well. These ad-

vantages can be preserved whether the application
code is written specifically for use with SGML or

SGML is used as a front-end to independent tools.

Applications of S G M L

Although little SGML software is commercially avail-

able as yet, there are several ongoing development

efforts. A project is under way at the Institute of

Computer Sciences and Technology at the National

Bureau of Standards (NBS) to develop an SGML
validation suite. The validation suite is being built,

along with a public-domain SGML parser, under the
Computer-Aided Logistic Support (CALS) program

of the Department of Defense. While the purpose of

the test suite is to validate SGML parsers intended

to process documents that conform to Department

of Defense SGML requirements, its examples of

correct syntax may also be useful to individuals

learning the language.

The Association of American Publishers has

defined several SGML document-type definitions for

use by authors using machine-readable media to

submit books and articles for publication. The

Chicago Guide to Preparing Electronic Manuscripts

(University of Chicago Press, 1987) describes simi-

lar markup for use by authors submitting material

to the University of Chicago Press. Their guide-

lines also form a template for publishers defining

their own requirements for submission of electronic
material.

One particular publisher beginning to use
SGML is the Internal Revenue Service. Potential

SGML applications at the IRS include embedding
the text of relevant sections of the tax code in

explanatory material. The tax code can then be
printed by an application that generates copy for

legal review, but suppressed by the application that

prints the information for the taxpayer. SGML can

also be used to supply text to tax information ser-

vices that can in turn distribute it to tax preparers

and taxpayers with no government expense.

S G M L as a Preprocessor for

Over fifty independent writing departments located
throughout the world produce user guides and

reference manuals for Hewlett-Packard computers,
software, and electronic instruments. Electronic

interchange of material between departments is

often desirable: for example, a manual written in

one country may be translated to the local language
in another. Interchange is complicated by the
assortment of text processing tools used (which

includes TEX) and the corresponding differences in

markup as well as by the diverse hardware on which

the tools are installed. The same problems hamper

communication between the staff of different writing

groups.

SGML supplies a means of standardizing markup
conventions throughout the company, thereby al-

lowing interchange of files without requiring replace-

ment of all existing text processing software and the
corresponding hardware. A shared markup tech-

nique also provides a vehicle for discussion among
writers in different groups.

As an internal tool to aid in the production of
user documentation, Hewlett-Packard has therefore

developed an SGML parser and application gener-
ator called MARKUP. MARKUP allows SGML to

be used as a front-end to other text-processing sys-
tems. A document-type definition that represents

the structure of Hewlett-Packard user documen-

tation has been developed and successfully com-

pared to segments of different published manuals.

The first MARKUP application, scheduled for beta
testing mid-summer of 1987, uses to print

documentation from source files coded in SGML.

A MARKUP application is specified by a table
which indicates the processing to be performed

for each instance of every element included in the

document-type definition. Table entries specify

actions to be taken at the beginning of the element,
within it, and at its end. When the MARKUP

application generates a w source file analogous

to the original SGML input, the actions usually

consist of the Q j X markup corresponding to the
SGML construct. For example, the string ''{\itn

might be generated at the beginning of a book title,

an introduced term, or a variable component in a

computer command, while "3" is generated at the
end of these structures. When a quotation mark

occurs within normal text. the w open-quote

convention """ is generated; when a quotation

mark occurs within a quote element, the close-quote
sequence "' ' " is output.

TUGboat, Volume 8 (1987), No. 2 225

When necessary, actions can also be entered

as C code to be executed when the corresponding

structure occurs. For example, C code is used to

process forward and backward cross-references and

to verify that every term introduced in the text is

entered in the glossary.

Use of with MARKUP differs from use

of by itself. For example. consider the

code used to start a chapter. Should a macro be

defined for this purpose? Kot necessarily. Macros

are used to give a convenient label to sequences

of instructions that are needed repeatedly. In this

case. the code is isolated in the start-chapter cell of

MARKUP'S definition table. MARKUP invokes it as

often as needed and. in effect. it has already been

given a logical name (start-chapter).

However, debugging is simplified when macros

are used; the source file generated by MARKUP

is more readable when it contains macro calls. The

macros are not parameterized as they would be if

the calls were user-written instead of automatically

generated. For example, suppose that the chapter

title is normally printed on the inside margin of

the page header. but that the user can specify

a different header if the chapter title is too long

to fit in available space. User-invoked macros

should be designed for the usual case. The chapter

macro needs one parameter, the chapter title. To

override the default page header. the user can call

a second macro. When macros are automatically

invoked, however. the chapter macro can have

two parameters, the chapter title and the header

specification. even though the values are usually

identical. This repetition is not tedious to the

user, since he enters the chapter title only once.

Furthermore, there is no risk that two copies

intended to be identical will in fact differ.

TUG a n d t h e S t a n d a rd s Co mmun i ty

In the United States, standards work on SGhlL

began in ANSI Committee X3J6 and then moved

to X3V1. TUG has maintained liaison with these

committees since 1982. and TUGBoat regularly

publishes liaison reports. Larry Beck is the current

representative.

When TUG first sent me to an X3J6 meeting in

January, 1982. my goal was to explain concepts

such as boxes and glue to committee members. I

would like to belatedly thank TUG for my current

involvement with SGML and am delighted to take

this opportunity to convey information in the other

direction.

TUG Business

Treasurer 's R e p o r t

For the first time, TCG's financial statements

have been audited. We invited the firm of Deloitte

Haskins & Sells to examine our records. DH&S have

stated their conclusions in the report which appears

on the following pages. The report shows that cash

receipts during 1986 exceeded cash disbursements

by $98.000. The auditors' letter reflects their

opinion that TUG's accounts might be more fairly
stated were they reported on an accrual, rather

than a cash basis, a change TUG plans for its 1987

reports (for example. although TUG did have an

excellent year in 1986, a large portion of the ending

cash balance represents 1987 membership dues, paid

in advance during 1986).

It should be noted that one of TUG's fiscal

goals is the building of an available reserve equal to

one year's operating budget. a policy consistent with

the practice of other non-profit societies. including

the American Mathematical Society. Cash reserves

at the end of 1986 totaled $143.000. as compared

with operating expenses of $306,000.

Samuel B. Whidden. Treasurer

