
TUGboat, Volume 8 (1987) , No. 2

The SCANTEX Processor

Version 1.0

1. Introduction. This program takes a TEX file

generated by WEAVE and strips out the sections which

have not been changed, outputting the changed

sections to a second, greatly reduced B X file. The

index. section names, and table of contents are

dropped as well.

The program uses a few features of the Modula-2

compiler used in its development (Logitech hlS-

DO§) that may need to be changed in other instal-

lations. System-dependent portions of SCANTEX can

be identified by looking at the entries for 'system

dependencies' in the index below.

The "banner line" defined here should be changed

whenever SCANTEX is modified.

define

banner =
~Th~su~suSCANTEX,uVers~onU1.Oo

2. The program begins with a fairly normal

header, made up of pieces that will mostly be

filled in later. The T&X input comes from file

TeX-file and the new output goes to file

out.. TeX-file . Unlike Pascal, Modula-2 does not

require the constant. type. and variable sections to

be placed here in the program header in a rigidly

specified order. but we will do it anyway. since WEB

makes it so easy.

module scan-TeX: (Import List 4)

const (Constants in the outer block 5)

type (Types in the outer block 6)

var (Globals in the outer block 7)

3. This procedure initializes the module.

procedure initialize;

var (Local variables for initialization 15)

begin

(Set initial values 8)
(Initialize the file system 1 6) ;

end initialize;

4. A few macro definitions for low-level output

instructions are introduced here. All of the terminal-

oriented commands in the remainder of the module

will be stated in terms of simple primitives. The

boxes signify words that must not be forced to

uppercase when the program is MANGLED, since

Modula-2 is case-sensitive.

define pr-char = -1 (* library

procedure to output a character *)
define pr-string = I u w r i t e s t r i n g u] (* library

procedure to output a string *)
define rd-string - I , ~ e a d ~ t r i n ~ , 1 (* library

procedure to input a string *)
define pr-card - j,WriteCard, /

(* library procedure to output a

cardinal number *)

define new-line - /,WriteLn,/ (* a new line *)
define print-string (#) = pr-string (#) (* put a

given string to the terminal *)
define read-strzng(#) = rd-strzng(#) (* read a

given string frorn the terminal *)

define prznt-cardznal(#) = pr-card (#, 1) (- put
a given cardinal to the terminal. in

decimal notation. using only as many

digit positions as necessary *)
define prznt-ln(#) = pr-strzng(#); new-lzne:

(*put a given string to the terminal,

followed by a new line *)
define prznt-char (#) r ~ r - c h a r (#) (r put a

given character to the terminal *)

i I m ~ o r t List 4) =
\ A

frorn .InOut,l import

pr-strzng , rd-strzng , pr-char . pr-card . new-lzne :

See also sections 10 and 11

This code is used in section 2.

5 . Let's define a few constants.

(Constants in the outer block 5) E

buf-szze = 1000:

(* maximum length of input line *)
file-name-len = 200: (* length of a file name *)

This code is used in section 2

6. A global variable called hzstory will contain

one of four values at the end of every run:

spotless means that no unusual messages were

printed: harmless-message means that a message

of possible interest was printed but no real errors

were detected: error-message means that at least

one error was found: fatal-message means that

the program terminated abnormally. The value

of hzstory does not influence the behavior of the

program: it is simply computed for the convenience

of systems that might want to use such information.

We don't really have to worry about errors too

much in this particular program because the input

is machine-generated (by WEAVE). The error likeliest

to occur is failure during file opens.

124 TUGboat, Volume 8 (1987), No. 2

d e f i n e mark-harmless -
i f history = spotless t h e n

history +- harmless-message;

end ;

d e f i n e mark-error history t error-message

d e f i n e mark-fatal - history t fatal-message

d e f i n e err-print (#) print-ln (#) ; mark-error ;

(Types in the outer block 6) r

error-level = (spotless. harmless-message,

error-message , fatal-message):

This code is used in section 2.

7. (Globals in the outer block 7) -
history: error-level; (* how bad was this run? *)

See also sections 1 2 and 18.

This code is used in section 2.

8. (Set initial values 8) -
history +- spotless;

See also section 17.

This code is used in section 3.

9. Some implementations may wish to pass the

value of the history variable to the operating system

so that it can be used to govern whether or not

other programs are started. The doscall procedure

passes a program status value back to DOS. We use

fatal-error to terminate the program abnormally.

d e f i n e print-fatal-message z

print-string (- (That,was,a,f a t a l , ');

print-ln (- e r r o r , ,myuf r i e n d . ')
d e f i n e fataLerror(#) mark-fatal; print-ln(#);

print-fatal-message: doscall("4C, history);

(Terminate program, converting history to program

exit status 9) -
doscall("4C, history);

This code is used in section 24.

10. If we are going to use doscall from the

Logitech library we have to import it from the

module system.

(Import List 4) +-
f r o m system i m p o r t doscall;

11. Fi l e H a n d l i n g . Here we define the symbols

for use with file handling.

de f ine lookup =: /uLookupu/
(* library procedure to open a file *)

def ine close - /,Closeul
(* library procedure to close a file *)

def ine failure (#) (#. # [donel)
(* last file operation sucessful ? *)

def ine abort-if-open-error (#) =:

if failure (#) then

print-string ('unable,to,openu *):
fatal-ermr (filename):

end ;

def ine open-input-file (#) r lookup (#. filename,

false); abort-if-open-error (#)

def ine open-output-file (#) G lookup (#> filename:

true): abort-zf-open-error (#)

def ine close-file (#) G close (#);

def ine end-ile - reof
def ine null-char - /unul,/
define end-of-he(#) (ch = eol)

de f ine end-of-file(#) z (#.endfi le) - .

def ine read-char / u ~ e a d ~ h a r , 1
def ine wrzte-char E / u ~ r i t e ~ h a r u]

de f ine znput-char (#) - read-char (#. ch);

de f ine output-char (#) = write-char (#, ch)

de f ine read-ln (#)

w h i l e end-of-line (#) d o

input-char (#);

end ;

def ine write-ln (#) write-char (#, eol);

de f ine text-file r /,File,/

(I n l ~ o r t List 4) +- , A

f r o m [, ~ i l e ~ ~ s t e m , / i m ~ o r t lookup, -1.
read-char. write-char, text-file, close;

f r o m ascii i m p o r t eol, null-char;

12. Input goes into an array called buffer.

(Globals in the outer block 7) +-
buffer: a r r a y [O . . buf-size] o f char;

TeX-file, out-TeX-file: text-file;

13. The input-ln procedure brings the next line

of input from the specified file into the buffer array

and returns the value true, unless the file has

already been entirely read. in which case it returns

false. Under normal conditions, we will never

reach true end of file, for reasons discussed in later

sections, but we will handle it anyway. Trailing

blanks are ignored and the global variable limit is

set to the length of the line. The value of limit

must be strictly less than buf-size.

TUGboat, Volume 8 (1987): No. 2 125

procedure input-ln(var f : text-file): boolean;

(* inputs a line or returns false *)
var final-limit: [0 . . buf-size];

(* limit without trailing blanks *)
ch: char; (* current input character *)
line-pres : boolean;

(* temporary result of procedure *)
begin

limit +- 0; final-limit +- 0;

i f end-of-file (f) t h e n

line-pres +- false

else

input-char (f);
while 7 end-of-line (f) d o

i f ch = null-char t h e n

re turn false

end ;

buffer [limit] +- ch: inc (limit);

i f buffer[limit - 11 # -,' t h e n

finaLlimit +- limit

end :

i f limit = buf-size t h e n

read-ln (f) ; dec (limit):

err-print (* ! ,Inputuline,tooUlong~);

re turn true;

end ;

input-char (f);

end ;

read-ln (f) ; limit +- finaLlimit ;

line-pres + true;

end :

re turn line-pres;
end input-ln;

14. The output-ln procedure writes the next line

of output from the buffer array to the specified file.

procedure output-ln(var f : text-file);

(*outputs a line *)
var ch: char; (* current output character *)

temp: [O . . buf-size]:
begin

i f limit > 0 t h e n

for temp +- 0 t o limit - 1 d o

ch +- buffer [temp]; output-char (f) ;

end ;

end ;

write-ln (f);
end output-ln;

15. We define filename local to the initalization

procedure because it is used only during file open.

(Local variables for initialization 15) =
filename: array [O . . file-name-len - 11 o f char;

This code is used in section 3.

16. In this section we open both of the files.

define next-file (#) 7 filename [O] + -u - :

print-ln (#): read-string (filename):

new-line; print-ln (filename); new-line:

(Initialize the file system 16) =
next-file(-TeX,f i l e : *);
open-input-file (TeX-file);

next-file(*outputuTeXuf i l e : *) ;
open-output-file (out-TeX$le);

This code is used in section 3.

17. Here we initialize most of the variables. The

output-enabled flag is initialized to true so that the

lines in the header of the WEAVE-generated TEX file,

known as "limbo text", are picked up in addition to

the changed sections.

(Set initial values 8) +=
TeX-lane t 0; out-TeX-lzne t 0; lzmzt +- 0:

bufler[O] t O u - ; znput-has-ended + false;

output-enabled +- true:

18. (Globals in the outer block 7) +e

TeX-line : cardinal; (* the number of the current

line in the main file *)
out-TeX-line: cardinal; (* the number of the line

in the output ?r(file *)
limit: [O . . buf-size]; (* the last character position

occupied in the buffer *)
input-has-ended: boolean;

(*there is no more input *)
output-enabled: boolean:

(* we are copying input lines to output *)

19. Main Input Loop. This is the main pro-

cessing loop of SCANTEX. We simply read lines until

end of file. The get-line procedure will determine

the setting of the output-enabled flag. If set, we

copy the line to the output file.

(Read the input 1 9) -
while input-has-ended do

get-line;

i f output-enabled t h e n
output-ln (out- TeX-file): inc(out-TeX-line);

end ;

end ;

This code is used in section 24.

20. The get-line procedure is called to read in

the next line and scan it. We will output an "I'm

alive!" dot to the terminal every 100 input lines

and a new line every 2000.

126 TUGboat, Volume 8 (1 9 8 7) , KO. 2

procedure get-line: (* inputs the next line *)
var keep-looking : boolean ; t emp- index : cardinal:

begin

input-has-ended +- l i n p u t - l n (T e X - f i l e) :

if input-has-ended then

output-enabled +-false; return ;

else

i n c (T e X - l i n e) ;

if (T e X - l i n e mod 100) = 0 then

print-char (* . -);
if (TeX-l ine mod 2000) = 0 then

new-l ine;

end ;

end :

(Scan the line 21);
b u f f e r [l i m i t] t ' ; ;

end ;

end get-line;

21. In this section we determine whether the

current line is the beginning of a section ('\M'

or '\N' at beginning of line. followed immediately

by a section number) and. if so, whether the

section has been modified (' *. ' following the

number). We update the output-enabled flag

according. Additionally, the index section (' \ l nx3)

is considered end of file. If it is detected. we set

the flag znput-has-ended to terminate the program

and set output-enabled to false to keep the \ m x

command from being copied to the output file.

define numerzc-dzgzt-at (#) = ((b u f f e r [#] 5 - 9 *)

A (b u f f e r [#] > - O -))

define thzrd-char-matches (#) -
(b u f f e r [temp-zndex + 21 = #)

define second-char-matches (#) -
(bu f f e r [t emp-zndex + 1] = #) A

thzrd-char-matches

define char-matches (#) - (bu f f e r [t emp-zndex] =

#)
define three-chars-match(#) = char -matches (#)

A second-char-matches

(Scan the line 21) E
temp-zndex + 1:

if (lzmzt > 3) A (buf fer[O] = - \ *) then

if (char -matches (O M *) V char-matches (* N *)) A

numerzc-dzgzt-at (2) then

(Search for ' * . '; set output-enabled if

found 22):
elsif t h ree -chars -match(* l *) (* n *) (* x *) then

output-enabled t false;

znput-has-ended t t r u e .

end :

end :

This code is used in section 20

22. Starting at the first digit of the section

number. search for .* .'. which indicates that this

is a changed section. Discontinue the search if

' *. 'is found or the current position is no longer a

numeric digit. which means we have moved past the

section number without finding it.

(Search for . * . '; set output-enabled if found 22)
output-enabled + false: keep-lookzng + t r u e .

temp-zndex t 3;

while (?output-enabled) A keep-lookmg do

output-enabled +-

three-chars-match(*\ *)(.* *) (- . *) ;
keep-lookzng +- numerzc-dzgzt-at (t e m p - z n d e x) :

znc (t r m p - z n d e x) :

end :

T h ~ s code is used in s e ~ t ~ o n 21

23. The command to generate the table of

contents (' \con') is nornlally the last line in a

Tm file generated by WEAVE. Part of its function

is to terminate gracefully by generating a

'\bye' command or equivalent after generating

the contents. Since we are dropping the ,\con'

command. we must issue the '\bye' command

directly, just before closing the input and output

files.

(Add '\bye' conimarid to end of output and close

both files 23) -
buf fer[0] + *\.: b u f f e r [l] +- * b 0 :

buf fer[2] t ' y - ; buf ler[3] + * e -: lzmzt + 4:

output-ln(out-TeX-file): z n c (o u t - T e X - h e) ;

close-file (TeX-file): close-file (ou t -TeX- f i l e) :

Thls code 1s used 111 section 23

24. Main Program. This is the main program.

begin

prznt-ln (b a n n e r) : mztzalzze;

(Read the input 1 9) ;

(Add '\bye' cornnland to end of output and

close both files 23) :
(Print statistics about line counts 2 6) ;

(Print the job hzstory 2 5) :

(Terminate program. converting h ~ s t o r y to

program exit status 9) :

end scan- T e X .

25. Here we simply report the history to the user.

(Print the job his tory 2 5) -
case h,istory of

spotless: p r i n t - h (* (No ,errorsuwereu f o u n d .) *)

T U G b o a t , V o l u m e 8 (1987), KO. 2

print-ln (~~arning~message~above?) *) 1
error-message :

~ r i n t _ s t r i n ~ (* (Pardonume, , b u t u I U t h i n k u I u *);
print-ln ('spotted,something,wrong .) -) I

fatal-message: print-fatal-message

end ; (* t h e r e are n o other cases *)

This code is used in section 24.

26. (P r i n t statistics abou t l ine coun t s 2 6)

new-l ine; print-ln (' L i n e u c o u n t u s t a t i s t i c s : -) ;

print-cardinal (TeX-l ine);

print-ln (* , l i n e s u i n , i n p u t u T e X u f i l e -1;
print-cardinal (ou t -TeX- l ine) ;
print-ln(~,lines,in,outputuTeXuf i l e *) ;

This code is used in section 24.

27. Index.

abort-if-open-error : 11.
asci i : 11.

banner : 1, 24.

boolean: 13, 18. 20.

buf-size: 5. 12, 13, 14, 18.

b u f f e r : 12. 13, 14, 17, 20. 21. 23.

cardinal: 18, 20.

c h : 11, 13, 14.
char : 12, 13, 14, 15.

char-matches: 21.
close: 11.
close-file: ll, 23.

dec: 13.

doscall: 9, 10.
end-file: 11.
end-of-file: 11: 13.

end-of-line: 11. 13.

eol: jJ.
err-print: 6, 13.

error-level: 6, 7 .

error-message: 6, 25.

f : 13, 14.
failure: 11.
fa lse: 11, 13, 17, 20, 21, 22.

fatal-error: 9. 11.

fa tal-message: 6 , 25.

f i le-name-len: 5, 15.

f i lename: 11, l5, 16.

F i l e s y s t e m : 11.

final-limit : 13.
get-line: 19, 20.
harmless-message: 6, 25.

his tory : 6, 7, 8, 9, 25.

i n c : 13, 19 , 20, 22, 23.

in i t ia l ize: 3, 24.

I n O u t : 4.

I n p u t l i n e t o o l o n g : 13.

input-char: 11, 13.

input-has-ended: 17, 18. 19, 20, 21.

input- ln: 13. 20.

keep-looking : 20, 22.

l imi t : 13, 14, 17, 18, 20. 21, 23.

line-pres: 13.
Logitech: 1, 10.

lookup: 11.
mark-error : 6.
mark-fatal: 6, 9.

mark-harmless : 6 .

Modula-2: 1, 2. 4.

MS-DOS: 1, 9. 10.

new-line: 4, 16. 20, 26.

next-file: a.
null-char: ll, 13.

numeric-digit-at: 21. 22.

open-input-file : 11, 16.

open-output-file: 11. 16.

out-TeX-file: 2: 12. 16. 19, 23.

o u t - T e X l i n e : 17, 18. 19, 23, 26.

output-char: 11 . 14.

output-enabled: 17, u, 19, 20, 21, 22.

output-ln: U. 19, 23.

pr-card: 4.

pr-char: 4.
pr-string: 4.

print-cardinal: 4, 26.

print-char: 4. 20.

print-fatal-message: 9. 25.

print-ln: 4. 6, 9, 16, 24, 25, 26.

print-string: 4. 9. 11, 25.

rd-string : 4.

read-char : 11.
read-ln: 11. 13.

read-string: 4, 16.

s c a n - T e X : 2. 24.

second-char-matches: 21.
spotless: 6. 8 , 25.

sys tem: 10.

s y s t e m dependencies: 1. 2. 4. 9. 10. 11, 13.

t e m p : g.
temp-index: 20, 21, 22.

TeX-file: 2. 12. 16. 20, 23.

TeX-l ine: 17, 18: 20, 26.

text-file: ll? 12, 13, 14.

third-char-matches: 21.
three-chars-match: 2 l , 22.

t rue : 11: 13. 17. 21, 22.

U n a b l e t o o p e n . . . : 11.

write-char: 11.
write-ln: 11. 14.

TUGboat. Volume 8 (1987), No. 2

(Add '\bye3 command to end of output and

close both files 2 3) Used in section 24.

(Constants in the outer block 5) Used in

section 2.

(Globals in the outer block 7 ; 12, 1 8) Used in

section 2.

(Import List 4; 10; 11) Used in section 2.

(Initialize the file system 1 6) Used in section 3 .

(Local variables for initialization 15) Used in

section 3.

(Print statistics about line counts 2 6) Used in

section 24.

(Print the job his tory 25) Used in section 24.

(Read the input 1 9) Used in section 24.

(Scan the line 21) Used in section 20.

(Search for ' * .'; set output-enabled if

found 22) Used in section 21.

(Set initial values 8: 1 7) Used in section 3.

(Terminate program: converting his tory to

program exit status 9) Used in section 24.

(Types in the outer block 6) Used in section 2.

Fonts

Blacker Thoughts

John S. Gourlay

Ohio State University

Like many owners of write-white laser printers, I

found a few months ago that the "cm" series of

Computer Modern fonts. as distributed. is unaccept-

ably faint on my Xerox 2700. I began my search for

more suitable METAFONT parameter settings with

the "conjectural" settings for QMS printers, which

share the same print engine as the 2700. I was

immediately disappointed. however. Printed, the

new bitmaps were acceptably black. but they didn't

look anything like the Computer Modern in Corn-

puter Modern Typefaces, and not even very much

like the original bitmaps printed on a write-black

Canon engine.

Laser printers work by producing patterns of

electric charge on a piece of paper. The charge

attracts particles of black .'toner," which eventually

forms a permanent printed image. Write-black laser

printers start with an uncharged piece of paper and

in effect use a laser to place spots of charge on

the paper. Write-white laser printers start with a

fully charged piece of paper and then use a laser to

remove the charge in places where the final image

should remain white. In both cases the round

spot produced by the laser is slightly larger than

a pixel so that no gaps are left between spots in

solid regions of black or white. For this reason,

lines drawn on a write-black laser printer tend to be

slightly thicker than one would expect given their

width in pixels, and lines drawn on a write-white

printer tend to be slightly thinner (the "white lines"

are thicker).

The plain base file of METAFONT anticipates

this kind of systematic difference between printers

by providing a parameter called blacker whose

value can be added to the thickness of pen strokes

to compensate for any thinning inherent in the

printing process. After some experimentation with

various settings of blacker I decided empirically

that the higher I made the value of blacker the

smaller I found such lowercase letters as o and e

to become. Also decreasing were the sizes of the

bowls of such letters as p and b. the widths of m.

n. and the lower part of h. The overall impression

was that the "x-height" of the font was decreasing

as blacker increased. At the conjectured setting of

blacker = .75, the effect was great enough to make

the font look entirely different and much less legible

than the model in Computer Modern Typefaces.

Once I saw the problem it wasn't hard to see

why it was happening. Looking at the METAFONT

code for the roman lowercase o, one can see that

it is drawn with a variable-width pen moving along

a path through four points at the character's top,

left. bottom. and right. Concentrating on point 1.

the top point of the o. the relevant METAFONT

statements are

penposl (vazr . 90);

and

y l , = h + vround 1.500:

The first says that the pen at point 1 has a nib of

width vazr and it is held vertically with the "right"

edge of the nib at the top. The second says that

the right (or top) edge of the pen should be at a

distance h + vround 1.500 from the baseline. The

parameter blacker figures into this because the pen

width. vazr. increases as blacker increases. Since

the location of the top edge is fixed, an increase in

blacker causes the whole pen to move down, and

all the extra width appears at the bottom edge of

the pen stroke. The same thing happens at the

sides and bottom of the o. so the overall effect of an

