

58 TUGboat, Volume 9 (1988), No. 1

accomplish a complete expansion, one should use

\edef, where further expansion can be prevented

only with \noexpand. This example (using \zz as

an argument to \xx), which would not work with

\expand& ter, does work with \edef:

% Equivalent to "\def \temp{\xx [ABC])I1.
\edef\temp~\noexpand\xx\zz)

\temp

As a side remark: Example 1 can also be pro-

grammed without \expandaf ter, by using \edef:

% Equivalent to "\def \temp{\xx [ABC])" .
\edef\tempC\noexpand\xx\yy)

\temp

Example 3

In this example, (tokenl) is a definition.

\def \xxi\yy)
\expandafter\def\xx(This is fun)

\expandafter will temporarily suspend \def, which

causes \xx being replaced by its replacement text

which is \yy. This example is therefore equivalent

to

\def\yy(This is fun)

Examples 4 and 5: Using \expandafter to

pick out arguments

Assume the following macro definitions \Pick. . .
of two macros: which both have two arguments and

which print only either the first argument or the

second one. These macros can be used to pick out

parts of some text stored in another macro.

% \PickFirstOfTwo
% This macro is called with two
% arguments, but only the first
% argument is echoed. The second
% one is dropped.
% #I: repeat this argument
% #2: drop this argument
\def\PickFirstOfTwo #1#2{#1)

% \PickSecondOfTwo
---------------- * ----------------

% #1 and #2 of \PickFirstOfTwo
% are reversed in their role.
% #I: drop this argument
% #2: repeat this argument
\def\PickSecondOfTwo #1#2{#2)

Here is an application of these macros (Examples 4

and 5) where one string is extracted from a set of

two strings.

% Define macro \a. In practice, \a

% would most likely be defined
% by a \read, or by a mark.
\def\aC(First part){Second part))

% Example 4: Generates "First part".
% Pick out first part of \a.
\expandafter\PickFirstOfTwo\a

% Example 5: Generates "Second part".
% Pick out second part of \a.
\expandafter\PickSecondOfTwo\a

Let us analyze Example 4: \PickFirstOfTwo is

saved because of the \expandafter and \a is

expanded to (First part3CSecond part). The

two strings inside curly braces generated this way

form the arguments of \PickFirstOfTwo, which

is re-inserted in front of (First part)(Second

part). Finally, the macro call to \PickFirstOfTwo

will be executed, leaving only First part on the

main token list.

Naturally the above \Pick. . . macros could be

extended to pick out x arguments from y arguments,

where x 5 y, to offer a theoretical example.

Example 6: \expandafter and \read

The \expandafter can be used in connection with

\read, which allows the user to read information

from a file, typically line by line. Assume that a

file being read in by the user contains one number

per line. Then an instruction like \read\stream

to \InLine defines \InLine as the next line from

the input file. Assume, as an example, the following

input file:

12

13

14

Then the first execution of \read\stream to \In-

Line is equivalent to \def \InLine{12J, the second

one to \def \InLine{13u), and so forth. The space

ending the replacement text of \InLine comes from

the end-of-line character in the input file.

This trailing space can be taken out by defining

another macro \InLineNoSpace with otherwise the

same replacement text. The space contained in

the replacement text of \InLine matches the space

which forms the delimiter of the first parameter of

\temp in the following. Here, the macro \reach

reads one line from the input file and defines the

TUGboat, Volume 9 (1988), No. 1

Example 8: Forcing the partial expansion of

token lists of \writes

\expandafter can be used to force the expansion

of the first token of a delayed \write. Remember

that unless \write is preceded by \immediate,

the expansion of the token list of a \write is de-

layed until the \write operation is really executed,

as side effect of the \shipout instruction in the

output routine. So, when given the instruction

\write\stream<\x\y\zl, will try to expand

\x, \y and \z when the \shipout is performed, not

when this \write instruction is given.

There are applications where we have to expand

the first token (\x in our example) immediately, in

other words, at the time the \write instruction

is given, not when the \write instruction is later

actually performed as side effect of \shipout. This

can be done by:

\def \ws(\write\stream)

\let\ex = \expandafter

\ex\ex\ex\ws\exC\x\y\z)

Going back to our explanation of multiple \ex-

pandafters: \us corresponds to \a, C to \b, and \x

to c. In other words \x will be expanded (!!), and

(will be inserted back in front of it (it cannot

be expanded). Finally, \ws will be expanded into

\write\stream. Now \write will be performed

and the token list of the \write will be saved

without expansion. But observe that \x was al-

ready expanded. \y and \z, on the other hand,

will be expanded when the corresponding \shipout

instruction is performed.

Example 9: Extracting a substring

Assume that a macro \xx (without parameters)

expands to text which contains the two tokens \aaa

and \bbb embedded in it somewhere. You would

like to extract the tokens between \aaa and \bbb.

Here is how this could be done:

% Define macro to extract substring
% from \xx.
\def\xx(This is fun\aaa TTXXTT

\bbb That's it)

% Define macro \extract with three
7, delimited parameters.
% Delimiters are \aaa, \bbb, and \Del.
% Macro prints substring contained
% between \aaa and \bbb.
\def\extract #l\aaa#2\bbb#3\Del(#2)

% Call macro to extract substring

% from \xx.

% Prints "TTXXTT".
\expandafter\extract\xx\Del

% which is equivalent to:
\extract This is fun\aaa TTXXTT

\bbb That's it\Del

In a "real life example" \xx would be defined

through some other means like a \read. There is

no reason to go to that much trouble just to print

TTXXTT.

Example 10: Testing on the presence of a
substring

Now let us solve the following problem: We would

like to test whether or not a macro's replacement

text contains a specific substring. In our example,

we will test for the presence of abc in \xx's replace-

ment text. For that purpose we define a macro

\@TestSubS as follows: (\@Del is a delimiter):

\def \@Testsubs #labc#2\@Del{. . .)
Now look at the following source:

\def \XXCAABBCC)

% #1 of \@Testsubs is AABBCC.
\expandafter\@TestSubS\xx abc\@Del

\def\xx(AABBabcDD)

% #1 of \@Testsubs is AABB.
\expandafter\@TestSubS\xx abc\QDel

Observe that

1. If \xx does not contain the substring abc

we are searching for, then #1 of \@Testsubs

becomes the same as \xx.

2. In case \xx does contain the substring abc,

then #I of \@Testsubs becomes that part of

\xx which occurs before the abc in \xx.

We can now design \Ifsubstring. It is a

simple extension of the above idea, with a test

added at the end to see whether or not #I of

\@Testsubs is the same as \xx.

\catcode'@ = I1

% This conditional is needed because
% otherwise we would have to call the
% following macro \If NotSubString.
\newif\if@TestSubString

% \Ifsubstring
7 ============

% This macro evaluates to a conditional
% which is true iff #l's replacement
% text contains #2 as substring.

TUGboat, Volume 9 (1988), No. 1

% #1: Some string
% #2: substring to test for whether it

% is in #i or not.
\def\IfSubString #1#21%

\edef\QMainString{#l)%

\def\@TestSubS ##1#2##2\@DelC%

\edef\@TestTemp{##l))%

\expandafter\QTestSubS

\@MainString#2\QDel

\if x\@MainString\@TestTemp

\QTestSubStringf alse

\else

\QTestSubStringtrue

\fi

\if@TestSubString

3
\catcode'@ = 12

Example 11: \expandafter and \csname

A character string enclosed between \csname and

\endcsname expands to the token formed by the

character string. \csname a?a-4\endcsname, for

instance, forms the token \a?a-4. If you wanted to

use this token in a macro definition you have to do

it the following way:

\expandaf ter

\def \csname a?a-4\endcsnameI. . .3

The effect of the \expandafter is of course to

give \csname a chance to form the requested token

rather than defining a new macro called \csname.

Summary

These examples have shown some typical applica-

tions of \expandafter. Some were presented to

"exercise your brains a little bit". I recommend

that you take the examples and try them out;

there is very little input to enter. I also encourage

you to tell Barbara Beeton or me what you think

about tutorials in TUGboat. There are many more

subjects which could be discussed and which may

be of interest to you.

This article is, as briefly mentioned in the

introduction, an adaptation of a section of my

book, Another Look At m, which I am currently

finishing. The book, now about 800 pages long,

grew out of my teaching and consulting experience.

The main emphasis of the book is to give concrete

and useful examples in all areas of m. It contains,

to give just one example, 100 (!!) \halign tables.

In this book you should be able to find an answer

to almost any Tj$ problem.

Macros for Outlining

James W. Walker

Department of Mathematics

University of South Carolina

The purpose of this note is to describe stand-

alone macros for the preparation of outlines in the

standard format. For instance, the desired output

might look like:

Vegetables

A. Green ones

1. lettuce

a. iceberg

b. leaf

2. Broccoli, almost universally despised

by children. The strong flavor is only

made palatable by quick stir-frying.

B. white ones

1. potatoes

2. turnips

11. Animals.

111. Minerals.

Notice that a topic is allowed to be a paragraph,

not just one line, as in topic I.A.2. I wanted

to take care of the counting and indentation

as painlessly as possible. Something like this

can be done in I4M using nested enumerate

environments, but I wanted the input format to be

even simpler.

When typing an outline, it is natural to show

the structure by indenting with the tab key. This

is particularly easy if one has a text editor with an

automatic indentation feature. With that feature,

hitting the Return key produces a new line with the

same amount of indentation as the previous line.

When the input is typed this way, we can tell the

indentation level of a topic by counting tabs. We

also need to mark the beginning of a topic, since

not every line begins a new topic. I chose to mark a

new topic with a pound sign (#). Thus, the input

to produce the outline above could look something

like:

