
TUGboat, Volume 9 (1988), No. 2 123

Porting to C

Klaus Lichtenwalder

Datapat GmbH Miinchen

There are already several C versions of m available

that claim to have passed the trip test, namely

C o m m o n m , T u r b o m and the version for the

Commodore Amiga. It is also said that parts of

M i c r o w are written in C. We have also developed

a portable version of m in C in a one year project,

which now has been upgraded to the latest (as far

as we know) Version 2.5. Our version of passes

the Trip test (naturally, otherwise we wouldn't dare

tell you) and has been very easily ported to a

number of different machines, as you will see later

on.

The translation process

is supposed to be portable by any means (if
you get a running version of the BSD pc Pascal

compiler). If you look at the distribution
sources, you will find that rn has actually been

written in a meta-language called WEB. If you

finally get the necessary things up und running and

have your 'l&X Tangled to Pascal source (which is

supposed to show up at the end), you probably

might stop trying to port '&$. But if you know

something about Pascal and aren't worried about

editing lMbyte files, as we did, just keep on working,

or, better, have your Pascal compiler carry on. So,

depending on your Pascal compiler, you could have

a running version of T$jX or, more probably if

you are not on a BSD machine, you will start to
look at the lMByte of error messages you just got.

So did we, and encountered a problem with our

Pascal compiler (probably a cross-compiled version

from a 8116-bit machine) in handling reasonably-

sized (definitely not large) arrays. A problem had
already shown up in compiling Tangle and Weave,

two tools you need for handling WEB files. After

trying to fix that problem in Pascal without losing

too much efficiency, we stopped relying on Pascal
and thought about using something else.

Not too far away from Pascal, and maybe a

reasonable choice on a UNIX system, we started

to think about C. Yet another reason was a C

compiler that never showed up with a bug or the

like (even the optimizer wasn't buggy, something

you may encounter on some 680x0-machine or

other). So with this promising background, we took

a close look at the some 23,000 lines of source code

and stopped working on that problem soon after,
because vi didn't seem well suited for this problem,

since standard vi is limited to a 256K input file!

Handling multiple files is not comfortable and what

about viewing two files at the same time? We

split the source into many smaller units, so as to

drastically reduce compile time when making minor

changes in just one procedure, and to have better

response time in handling text units of a few K
instead of a few hundreds. People invented a make

facility, so why not use it? (God bless UNIX!)

At this time, we got the source of a fairly

big version of EMACS and tried to port it to our

machine (then a V.0 68000 machine). This decision

turned out to have a major impact on the successful

port of m, because of EMACS' sophisticated text

handling commands and not easily surpassed size

restrictions, and last, but by far not least. the

modes that help you edit programming languages.
But anyway, having EMACS doesn't solve

porting problems. First thing then was to invent

some kind of Pascal beautifier. The rewrite process

started afterwards. Line by line the Pascal source

was replaced by the equivalent C code. There

EMACS was of great help with global replace

functions over all of its buffers. and with its
keyboard macros. The latter were especially useful

for transforming Pascal control structures to their

C equivalents. We didn't intend to transform

into a hell of a C program (who would dare to

change Knuth's intentions, or, worse, algorithms?),

but to simulate Pascal restrictions as closely as
possible so as not to lose portability (whatever

degree of portabilit ,~ you expect). In the middle

of the rewriting process (and after buying "w:
The Program") we learned of some useful macros

and defines we re-introduced into the Tangled

source code for flexibility. So this prolonged step

of rewriting into C took about half a year. The

process of convincing the C compiler that the stuff

he was reading was actually C did not take too

long. There were quite a lot of misspellings and

misconceptions and the like to get rid of. if you

expected the program to do more than just print

out the banner message "This i s TeX . . ." .

The major problem

One misconception, however, was of particular

importance to the portability of the C version that

slowly came into existence. In the WEB versions there

are provisions for machines that do sign extensions,

and for machines that don't. We ignored the

preconditions, and. as always with a 50% chance.

you get the wrong half. When we learned about the
problem and also that this source wasn't intended

for our machine, we went over the source code once

again and spotted it with a handful of type casts.

124 TUGboat, Volume 9 (1988), No. 2

The net effect is, if your C compiler knows how to

handle casts (up to now, every C compiler we could

test did), that this source runs on both types of

machines.

Passing the Trip test

The important milestone after the banner is the Trip

test. Needless to say, it didn't run at once. In fact,

there were some very subtle bugs introduced while

rewriting. It took another half a year to succeed

with this test. One of the main problems lay in
the input routine, where we didn't use Knuth's raw

version, but the optimized version that happened to

be in the change file (ever heard of a change file?).

Needless to say, the algorithms and data structures
in Q X are computer proof; that means, that if you

have a compiler that deserves this name, you get

this program running.

Sure enough, people learned about our project
and asked for a port, if we ever got it running.
Most of the time these people were more optimistic
about a possible success than we were. But then we

could make the (ultimate) test for portability.

The one thing we learned is: that rn (whether
in Pascal or in C or whatever) is not only a

typesetting system, but also a compiler test system.
There were some problems compilers introduced

with the input of W, but if you wanted to
demonstrate the bug to the computer or compiler

distributor, you couldn't reproduce the error with

a normal sized program. We encountered the

fact that fixed array locations like memC327601,

as happen to be used as kind of register in the

typesetting processor Q$, will be translated to
anything, but definitely not to the locations you

would expect. Also you have to cope with the
most tricky optimizers, which try to keep the
program small enough by optimizing procedures
away, or deleting the index in z = mem[zl before

using it. But these problems were not too often
encountered, and after tuning some 110 statements

not for efficiency but for portability, we now have

the following ports:

Cromemco V.0 and V.2

PCS Cadmus 32Bit UNIX Systems

ALTOS UNIX and XENIX Systems
Convex with 4.2 UNIX

AT&T 3b2 running V.0 and V.2/V.3

HP Series 9500 and 93XX under HP-UX
IBM RT under AIX

The only preconditions we pose are that we
have a true 32-bit CPU (not an 80286) and we

prefer UKIX or UNIX look-alikes, but we don't
insist on this (as people insist on a VMS version).

Extensions

With this W i n C version we started a cooperation

with a German typesetter. In this project we

designed an extended m program, which we call

P h o t o m , to cope with the possibilities available

with phototypesetting machines, and made some

adaptations for German respectively European en-

vironments. The P h o t o m Program understands

two additional keywords, s e t s i z e and s l an t s i ze ,

so that we are capable of handling dynamic fonts

in the typesetting machine. Also we had to cre-

ate metric files (tfm-files) for the fonts that are

resident in phototypesetting machines, as there are
machines that are not able to download fonts. An-

other hard problem was to find the right kernings,

as typesetters need them.

An additional problem for the German environ-

ment is hyphenation of words with Umlaute (and

other special characters you encounter in a Euro-
pean environment). At the moment, there are two

solutions we know for hyphenation, both coming
from the University in Bonn, Germany. One is to

fool the hyphenation routine, while the other, and

by far better, solution requires a minor change in

the METAFONT description, recreating the fonts,

and an addition in the dvi driver. We preferred the

second approach for our German version of l&XinC.

T'X Adapted to CWEB

David Kennedy
Micro Publishing Systems, Inc.

This article announces in CWEB, a new

starting point for l)$ ports. We have recently

completed the translation of T)$ to CWEB, a

version of Don Knuth's WEB system of structured

documentation, entirely rewritten in C, with many

changes to take advantage of features found in C,

but not in Pascal. (For a more complete description

of CWEB refer to the TUGboat article: WEB
Adapted to C, Another Approach by Silvio Levy,

April, 1987).

Although this is a commercial venture, and

the Q$ translation is proprietary, we are offering

a copy of the binary and/or source code for a

reasonable license fee. We are also planning a fall

1988 commercial release of our fully TRIP-certified
version of for the PC and plan t o release UNIX

