
TUGboat, Volume 9 (1988). No. 3

Compact Matrix Display

Thomas Kneser

GWDG. Gottingen (FRG)

John S. McCaskill

MPI fiir biophysikalische Chemie,

Gottingen (FRG)

The following problem arose in the study of the

molecular structure of RNA[l]:

One wishes to represent information about the

probabilities that various pairs (i. j) from a sequence

of length n over a finite alphabet occur. It is impor-

tant to be able to locate accurately from the display

which pair is involved and how probable it is on

a logarithmic scale. A similar representation prob-

lem arises in displaying the strength of connection

between pairs of units of neural networks[2].

For large n. the only compact way to represent

the information on a line printer is to encode a

different character for each of a finite number of

probability levels. The information is then displayed

as a matrix. This leads to rather ugly output which

is not easily interpretable even if the characters

are chosen with the amount of black ink increasing

with increasing probability. However, for a first

look this is the most efficient way to obtain the

information. The problem then is to convert this

character output to a high quality image for visual

processing.

A succinct way of doing this is by drawing

black boxes of varying sizes accurately positioned

with lower left corners forming the square matrix of

probabilities. rn provides the opportunity to draw

such structures by setting sequences of appropriate

\vrules and to merge such plots with additional

text and alphanumeric information. This merging

leads as a side effect to the obvious advantage

that a complete paper can easily be transferred

through the networks by transmitting just a single

file. Figure 2 shows that part of the input file

which defines the matrix, containing line printer

style character data. The related graphic output is

shown in Figure 3.

Figure 1 shows the structure of one matrix

element, with wo ranging from about 5pt to lOpt

and wi < wo. The matrix elements can easily be

coded as:

\hbox to \woC\vrule height \wi width \wi

depth Opt \hfill (v 1)

V 1 is working fine for about n < 50 but for larger

n problems arise concerning W ' s internal storage

("! capacity exceeded ... "), even if the current

page contains nothing other than the matrix and

even if m e m - m a x t is set to the maximum of 216 - 1.

I I - wo-

Figure 1

What is the reason for this rapid exhaustion of

storage?

Clearly. has to hold all the stuff defining

the current page in mem,-array until the \shipout

operation is done. Taking this into account we have

to ask the following question: how much memory

does use for one matrix element?

Analysing V1 following 131, we find that for

each matrix element T&X generates the following

list of nodes:

- 1 boxnode

- 1 rulenode

- 1 gluenode

We define cr as the amount of storage needs to

allocate one rule matrix element. By summing up

W'S constants box-node-size, rule-node-size and

glue-spec-size we get:

01 = 7 + 4 + 4 = 15 memory-words

This requirement is high compared with that for

a character token , which requires only one m e m -

ory-word to fill about the same area on paper.

Fortunately one finds that there is at least one

alternative version with a < 01 :

\vrule height \wi width \wi depth Opt

\rest=\wo

\advance\rest by -\wi

\kern\rest (v2)

terms in italics with enclosed underline character refer

$0 PI

TUGboat; Volume 9 (1988), No. 3

\centerline{PARTITION FUNCTION PROBABILITIES OF BINDINGS)\medskip
\centerlineClog interval = 10.000)
\centerline{decreasing log (base 10) probabilities in order)
\hbox to \hsize~\hss\vbox~\halign~#\quad&\hfil#\cr
\eseqC Q)& 0 to -0.5\cr\eseq{ *)& -0.5 to -1.5\cr\eseqi o)& -1.5 to -2.5\cr
\eseqC =)% -2.5 to -3.5\cr\eseqC +)& -3.5 to -4.5\cr\eseqC -)& -4.5 to -5.5\cr
\eseq{ ;)& -5.5 to -6.5\cr\eseqC :)& -6.5 to -7.S\cr\eseqC ,)& -7.5 to -8.5\cr
\eseq{ .)& -8.5 to -9.5\cr\eseqi)& < -9.5\cr))\hss)%
\bigskip
\mow{ 1 2 3 4 5 6 7 8)
\mrowI 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1

- -

\mrow{ 20 C>

\MOW{ GGGWCAUACCUAWCGGCWWAAAGGACCWWCACGCGUAGCUAGCUACGCGAGGUGACCCCCCGAAGGGGGGWVC

Figure 2 : Input file SAMPLE1.TEX

TUGboat, Volume 9 (1988), No. 3

PARTITION FUNCTION PROBABILITIES OF BINDINGS

l o g interval = 10.000
decreasing (base 10) rob abilities order

C
G G U U C A U A C C U A U U C G G C U U U U A A A G G A C C U U U U C A C G C G U A G C U A G C U A C G C G A G G U G A C C C C C C G A A G G G G G G U U U C

Figure 3 : Output related to SAMPLE1.TEX

TUGboat, Volume 9 (1988), No. 3

Analyzing V2 we find:

- 1 ruleaode
- 1 smallnode (due to the \kern item)

and:

5 2 = 4 + 2 = 6 memory-words

since small-node-size = 2.

Comparing both 5 values we get:

5 2 = 0 . 4 ~ ~

Obviously V2 which is formulated more explicitly -

and somewhat less elegantly - does the job much

more economically. Therefore the macro \ s e t r u l e

in file CMD.TEX (Figure 4) contains V2.

Furthermore, storage requirements are reduced

by summing up the space of horizontal sequences

of empty matrix elements. using dimension register

\accmt. Since the displayed matrices generally

are sparse matrices this also leads to substantial

memory saving.

Besides storage space, the requirement for CPU

time is here also a limiting factor. We define T
as the amount of CPU time TEX needs to process

a particular matrix. Clearly T depends on the

number of processed matrix elements but also

heavily on the relation NE : NR : NO (number of

empty elements, rules and \otherchars) . Since we

have developed CMD for an application concerning

primarily sparse matrices, CMD should process

empty elements faster than elements of the two

other types. This is accomplished by the fact that

CMD tests for spaces first (refer to Figure 4: the

comparison of \next with \spacechar in macro

\dodol i s t) . If a space character is identified, CMD

needs neither to expand macro \ s e t r u l e nor to

clamber through the \if-chain. However, T is still

by a factor of 8 greater than the CPU time needed

to set 'normal' running text; for SAMPLE1.TEX

with

NE : NR : No = 5271 : 1386 : 420

Figure 4. The file CMD.TEX

we have measured T zz 16s (VAX 8650, Tfi'J 2.0,

Stanford version for VAX/VMS). About 0.3T are

absorbed by the activities of macro \nonblank;

here of course the \if-chain can be replaced by

one simple \ i f . . . \ e l s e . . . \f i clause if we declare

characters ' . , ;-+=*O' as active (catcode=13) -

that is by effectively using indexing technique. But

while CPU time tradeoff due to such a modification

is small (< 5%), the coding becomes significantly

more difficult to maintain and to update.

After these w n i c a l considerations let us still

mention one possible modification of CMD: for

some cases one may want the blacked rule to be

shifted from the lower left corner of the element

(ref. Figure 3) to the center of the element area.

This can easily be accomplished by replacing the

body of macro \ s e t r u l e by:

with an additional dimension register \ r u lh to

hold the rule height.

Finally, we hope the proposed coding can

serve as an efficient general purpose tool for real

discretized matrix display in a large number of

different applications.

\message(+++++ CMD Compact Matrix Display ,

McCaskill, J.S. "The Equilibrium Partition

Function and Base Pair Binding Probabilities

for RNA Structure" (1988) in press at

Biopolymers

Kohonen, T . "Self-organization and associative

memory" Springer, Berlin, Heidelberg,

New York (1984)

Knuth, D.E. ''W: The Program" Addison-

Wesley, Reading, Massachusetts (1986)

Version 1.4 +++++I
Th. Kneser, John S. McCaskill

width of elements

width of \vrule in an element

accumulates length of successive empty elements

c(\rest) = c(\wo) - c(\wi)

TUGboat, Volume 9 (1988); No. 3

% \huXX: heights and widths of \vrules in matrix elements

%
\def\mrow#l{\hbox to \hsize{\hfil\dolist #l\endlist\mtelem\hfil}>%

% % to set a centered matrix row
\def\eseq#l{\dolist #l\endlist\mtelem)%

% % to set an inline sequence of matrix elements

\global\advance\mtacc by \uo% to accumulate empty elements

\else%

\ifdim\mtacc>\zeropt'/,

\mtelem% process a sequence of empty elements

\f i%

\nonblank% process one nonblank item

\f i%

\let\next\dolist%

\f i%

\next}%

% \dolist and \dodolist are derived from 'The TeXbook' Ex. 11.5,
% they parse a sequence of tokens (in the actual case the
% argument strings of \eseq and \mow)

%
\def\nonblank{% to set nonblank matrix elements

\if\next .\wi=\hwaa\setrule%

\else\if\next ,\wi=\hubb\setrule%

\else\otherchars%

\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi}% end of \def\nonblank

%
\def\mtelem{\kern\mtacc\global\mtacc=\zeropt}

% to set horizontal space equivalent
% to a sequence of empty elements

\def\setrule{\vrule height \wi width \ui depth \zeropt%

\rest=\wo\advance\rest by -\wi%

\kern\rest}

% % to set a matrix element containing a rule
\def\otherchars{\hbox to \uo(\next\hss})%

% % to set nonblank & nonrule elements

\def\spacechar{ 3% to be compared with \next
%
\baselineskip=\uo plus Ipt % do n o t change

\lineskiplimit=Opt\parindent=Opt % the current font here!
\obey spaces

\input sample 1

