
TUGboat, Volume 10 (1989), No. 1

Font News

Dominik Wujastyk

Concrete Roman and Italic

The new book Concrete Mathematics by Ronald L.

Graham, Donald E. Knuth and Oren Patashnik*
is naturally typeset using TEX, and also uses new

typefaces. The maths is set in AMS Euler, a

typeface designed by Hermann Zapf for the AMS.

The text is set in special versions of Knuth's CM
family roman and italic, with weights designed to

blend with AMS Euler. This has been named

Concrete Roman and Italic.
Zapf's design for AMS Euler is intended to sug-

gest the look of mathematics as written on black-

boards. This is how maths has chiefly been written
by generations of maths teachers and researchers

and is the medium in which most mathematics has

always been seen by most mathematicians. The face
is distinctly calligraphic, as opposed to italic, and

in my view achieves the effect it seeks. But it faces

the same difficulty as any striking and original new
type design: it initially distracts the reader from
the underlying text. I t would be interesting to hear

from anyone who reads Concrete Mathematics right

through how the typefaces fare after protracted

reading.
The Concrete roman face appears to have

features in common with the CM typewriter font,

although at the time of writing I have not seen the
parameter files. It is a face somewhat in the genre

of Bigelow's Lucida or Carter's Bitstream Charter,

though different from these, of course.
For an example of the Concrete and Euler

fonts, see Knuth's article "Typesetting Concrete",
page 31 in this issue.

Lucida

In December 1988 Chuck Bigelow informed me that:

Atari is soon (January 1989) bundling Lucida

text fonts with its Postscript clone upgrade

for its laser printer, the SLM 804. The

Lucida fonts include the text character

set. The Lucida math fonts will also be
available for Atari systems, but from the

Imagen Corp., later in 1989. Also, QMS-

Imagen are bundling Lucida fonts in the
same character set with a software Postscript

clone "UltraScript PC" for IBM PCs and

various printers. The Lucida TEX math fonts
will also be available from Imagen for that

system.

Graphics

Computer Graphics and TEX - A Challenge

David F. Rogers
Aerospace Engineering Department

United States Naval Academy

Of late there has been considerable interest in the
inclusion of graphics output within a docu-

ment. Programs such as w, g n u m , Fig,
and TransFig seek to provide a mechanism for the

inclusion of graphics within a '&$ document. Each

of these programs attempts to provide a nearly

complete environment for the design and generation
of line art or halftones for inclusion in TEX. All

are worthwhile efforts. However, each suffers from a

serious problem - device dependence. For example.

the PICQ~X macro package is too large to run on
a microcomputer or in fact many workstations-

it really requires a special large implementation

of Q X ; Fig and TransFig are graphics device

dependent (Sun workstations); g n u m only gen-
erates I P W compatible output; e t ~ . Yet one of

the strong attractions of is its device inde-

pendence. l&X itself runs on literally dozens of

different machines from Crays, through the latest
Silicon Graphics, Ardent, and Stellar supermini-
computer engineeringlscientific workstations, to a
lowly PC XT running MS-DOS.

Systems such as m, Fig, Transfig and

g n u m basically require the user to recreate graph-

ical output or to generate it ab znztzo. This is rather
inefficient. There are literally dozens of graphics
programs that produce better graphical output,

more efficiently than any of these systems.

An alternate technique for importing graphics
into is to use the \special command. Unfortu-

nately, this requires giving up device independence.
Further, not all dvi drivers support all \special

commands.

A Suggested Minimal Set of Graphics

Macros

Graphics can be incorporated into TEX documents

most efficiently by importing the output of graphics
programs directly into the document in the

form of Plain commands. The important

question is how to do this easily and efficiently.

Fortunately, only passive graphics is contained in a
publishable document. Consequently, the functional

requirements for graphics is quite limited (see Refs. 1
and 2). Specifically, these are the ability to move the

* Reading, Mass.: Addison-Wesley, 1989.

TUGboat, Volume 10 (1989), No. 1

writing instrument both invisibly and visibly about

the writing surface to create thin lines and small

dots (points), to 'plot' finite sized areas called pixels

in various colors or monochrome and to generate
text at specified size, orientation and location. It

is convenient to be able to specify movements and

locations in either absolute or relative coordinates.
Additionally, it is convenient to be able to initialize

the graphics system, to explicitly exit the graphics

system and to specify the size and location of the
writing surface. Finally, it is convenient to be able

to specify the thickness of thin lines.

A small suite of less than a dozen and a half
Plain 'I&$ macros can provide this functionality.

Only two of these functional requirements create
difficulties. Specifically, character generation at

arbitrary orientations is bothersome. Initially,

character generation orientations should be limited

t o horizontal and a 90 degree rotation counter-
clockwise from the horizontal. The latter can be

accomplished by using METRFONT to generate a

rotated font. The rotated font is positioned and

displayed by stacking the character boxes vertically.
Additionally, the generation of halftone images is a

bit difficult (see below).

Currently color is not normally incorporated

into 'l&X documents. However, with technological
advances, this is not far off. Hence, it must be
considered.

The Macros

The macros and their suggested calling arguments

required t o implement this functionality are briefly
described below. Unless otherwise specified units
are any acceptable Q X values.

\beginpicture (Begin picture)

Sets any required initial parameters. Saves all

current parameters.

\endpicture (End picture)

Resets all parameters to the saved values.

\viewport#1#2 (Viewport)

#1 The horizontal size of the area for the

graphics.

#2 The vertical size of the area for the graphics.

Default size is \hsize by \vsize

The origin is in the lower left corner, positive
upward and to the right.

Viewport is the common computer graphics
name for this function.

\linethickness#l (Line thickness)

#1 The thickness of a thin line. Default is lpt .

\setrsl#l#2 (Set resolution)

#1 The number of pixels in the horizontal
direction within the viewport.

#2 The number of pixels in the vertical direc-

tion w

Set resolution applies only to the \setpxl

command given below. It should be called only

once within a picture.

ba#1#2 (Move absolute)

#1 The distance to be moved invisibly in a hor-

izontal direction (x-direction) in absolute
coordinates, i.e., from the origin set by the

viewport command.

#2 The distance to be moved invisibly in a

vertical direction (y-direction) in absolute

coordinates, i.e., from the origin set by the
viewport command.

Moves the cursor from the current cursor po-

sition to that specified by #I, #2 in absolute

coordinates.

br#l#2 (Move relative)

#1 The distance to be moved invisibly in a
horizontal direction (x-direction) in relative

coordinates, i.e., from the current location

of the cursor.

#2 The distance to be moved invisibly in a

vertical direction (y-direction) in relative

coordinates, i.e., from the current location

of the cursor.

Moves the cursor from the current cursor po-

sition to that specified by #I, #2 in relative

coordinates.

\da#1#2 (Draw absolute)

The distance to be moved visibly in a hor-

izontal direction (x-direction) in absolute

coordinates, i.e., from the origin set by the
viewport command.

The distance to be moved visibly in a

vertical direction (y-direction) in absolute

coordinates, i.e., from the origin set by the
viewport command.

Draws a line from the current cursor position to

that specified by #1, #2 in absolute coordinates.

\dr#l#2 (Draw relative)

#1 The distance to be moved visibly in a

horizontal direction (x-direction) in relative

TUGboat, Volume 10 (1989), No. 1

coordinates, i.e., from the current location

of the cursor.

#2 The distance to be moved visibly in a

vertical direction (y-direction) in relative

coordinates, i.e., from the current location

of the cursor.

Draws a line from the current cursor position to

that specified by #I, #2 in relative coordinates.

\pa#1#2 (Point absolute)

#I The distance to be moved visibly in a hor-
izontal direction (x-direction) in absolute

coordinates, i.e., from the origin set by the

viewport command.

#2 The distance to be moved visibly in a

vertical direction (y-direction) in absolute
coordinates, i.e., from the origin set by the

viewport command.

Moves from the current cursor to that

specified by #I, #2 in absolute coordinates and

creates a dot at that point.

\pr#l#2 (Point relative)

#I The distance to be moved visibly in a
horizontal direction (x-direction) in relative

coordinates, i.e., from the current location

of the cursor.

#2 The distance to be moved visibly in a

vertical direction (y-direction) in relative
coordinates, i.e., from the current location

of the cursor.

Moves from the current cursor position to that

specified by #I, #2 in relative coordinates and

creates a dot at that point.

\text#l (Text)

#I The text string to be plotted.

The current font is used. Default is crnrl0.

\tangle#l (Text angle)

#1 The angle ccw in degrees from the horizontal
a t which text is to be plotted. Initially only

0 and 90 degrees are allowed.

\setrgb#l#2#3 (Set rgb)

#I The red component of the current drawing

color.

#2 The green component of the current drawing
color.

93 The blue component of the current drawing

color.

The red, green and blue components of the

color are given as decimal numbers in the range

0 to 1 with 0 representing no intensity of the

component and 1 full intensity.

Black is indicated by r = 0, g = 0, b = 0.

White is indicated by r = 1, g = 1, b = 1.

The default is black.

\setpxl#1#2#3#4#5 (Set pixel)

#I The x-coordinate of the lower left corner of

the pixel.

#2 The y-coordinate of the lower left corner of

the pixel.

#3 The red component of the color of the pixel.

#4 The green component of the color of the

pixel.

#5 The blue component of the color of the

pixel.

A pixel is a finite area of the writing surface

extending to the right and upward from the

location specified by the coordinate given in #I

and #2.

The red, green and blue components of the
color are given as decimal numbers in the range

0 to 1 with 0 representing no intensity of the

component and 1 full intensity.

For monochrome (gray scale) images the mono-
chrome value is obtained by averaging the red,

green and blue components.

\setgray#l#2 (Set gray levels)

#I The number of gray levels available.

#2 Parameter that determines the gray level
representation scheme.

p - patterning (see Ref. 3 and below)

d - dither (see Ref. 3)

Using patterning the maximum number of
available gray levels depends on the resolution

of the output device.

With dither the specified maximum number of

gray levels sets the size of the dither matrix. It

must be a power of 2.

\setlut#1#2#3 (Set look-up table)

#I Number of red bits

#2 Number of green bits

#3 Number of blue bits

The number of shades or intensities of red,

green, and blue are 2#l, 2#2, and 2#3 respec-
tively. The number of colors is 2#1+#2+#3.

42 TUGboat, Volume 10 (1989), No. 1

Implementation Considerations

Since normal rn output is ultimately onto raster
scan devices, e.g., laser printers and digital pho-

totypesetters, the line drawing macros must im-

plement Bresenham's line drawing algorithm (or a
DDA) (see Ref. 3). PICI'EX, in fact, does this using

the period as the plotting character. Although using

the period as the plotting character achieves device
independence, if variable line thickness is required,

using only the period as the plotting character is

not sufficient.

Several alternate techniques suggest them-
selves. Two are mentioned here. The first is to use

METAFONT to define graphic plotting characters,

e.g., various sized dots, squares or diamonds from
which various thickness lines can be constructed.

The second is to directly define various size squares

using \hrule or \vrule (Ref. 4 page 64) to use in

constructing the various thickness lines. In either
case the 'symbols' should be overlapped to decrease

aliasing effects.

Inclusion of photographs or continuous tone

images in requires dealing with pixels to dig-
itally represent these pictures. Hence the \setpxl

macro above. Pixels have varying intensity. Printers

use a photographic screen process called halftoning

to print continuous tone images. There are two
principal digital analogs of this process: patterning

and dither (see Refs. 3, 5 or 6). Patterning gives

up spatial resolution to achieve intensity resolution.
Dither introduces randomness into the digitized

image t o give the impression of multiple intensity

(gray) levels without losing spatial resolution. Both,
actually print only black 'dots' on 'white' paper.

Both are easily extended to color.

In patterning, elements of a small grid are

either black or white. For example a 2 x 2 grid using
a single dot size yields 5 intensity levels as shown

here

The fifth intensity is, of course, no dots.
Multiple dot sizes can be used. With multi-

ple dot sizes, the number of intensity levels is

(width height of the grid)(the "umber of dot sizes +I)

From this it is easy to see that a 2 x 2 grid with 3 dif-

ferent dot sizes yields 256 different intensity (gray)

levels. However, not all these patterns necessarily

yield unique intensity levels. Monochrome images
are quite adequately represented by 256 intensity

(gray) levels. Note also that 256 is precisely the
number in a new font. Thus, one method

of generating these intensity levels is to create a

special graphics font using METAFONT. One word

of caution is in order: the number of 2 x 2 patterns
depends on the available spatial resolution. For

example, for a 2 x 2 pattern grid, an image digitized

with 512 pixels across its width requires a minimum
width on the page of a 300 dpi output device of

3.41 inches. This assumes that one physical output

device dot is used for each horizontal grid location.
Thus, only 5 intensity levels are available. Higher

resolution output devices, e.g., phototypesetters,

yield more intensity levels. Minimum acceptable

output resolutions are 1000-1200 dpi. Conse-
quently, 300 dpi laser printers would be useful for

proofing only. One additional subtlety should be

mentioned. Unless the patterns are carefully se-
lected, moirk as well as other undesirable patterns

appear in the output. These can be minimized

by randomly rotating the patterns 90, 180 and

270 degrees. Unfortunately, unless a font rotation

macro becomes available, this feature requires four

different graphics fonts.

Dither introduces controlled randomness into
the digitized image to produce the impression of

multiple gray levels. Intensity resolution is increased
without loss of spatial resolution. The algorithm is

conceptually quite simple:

for each scanline in the image

for each pixel along the scanline
determine the position in a dither matrix
i = (x Mod n) + 1

j = (y Mod n) + 1

determine the pixel display value
if image pixel intensity(x, y) <

dither matrix(i, j) then

write black pixel
else

write white pixel

end if

next pixel

next scanline

Details are given in Refs. 3 and 6. The number

of apparent intensity levels depends on the dither

matrix. Dither matrices are square. Their sizes

typically increase by factors of 2, e.g., 2 x 2, 4 x 4
and 8 x 8. The number of apparent intensity levels

is the dither matrix size squared, e.g., an 8 x 8
dither matrix yields 64 apparent intensity levels.

The optimal 2 x 2 dither matrix is

TUGboat, Volume 10 (1989), No. 1

The 4x 4 dither matrix, which can be derived from

the 2 x 2 matrix, is

0 8 2 1 0

15 7 13 5

Additional intensity levels can be obtained using

multiple dot sizes. Tj$ has quite adequate facilities

for implementing a dither algorithm.

Using the Macros

The set of TEX graphics macros described above
can certainly be used directly to create both line

art and halftones. However, except for touch-up

work, that is not their intended use. Their intended

use is as the end product of a filter pipet that can
be processed by Tj$ in a device independent way.

Conceptually, the intended pipeline is

The output of your favorite graphics program

is saved into a file.
A program converts this format to a neutral

file format here called the standard display file

format (.sdf).
A program converts the .sdf format to a TEX
file containing only the macro calls described

above.
TEX processes this file in the normal fashion

producing a .dvi file.

An output driver converts the .dvi file to some

device dependent form, e.g., Postscript, HP

LaserJetf, phototypesetter, etc.

Assuming that the output of your favorite graphics

program is already saved in a file, then the UNIX

pipe command line is

graf 2sdf < graphicsf i l e : sdf 2tex > f i l e . t ex

Standard Display File Format

The concept of storing a picture in a data file

is part of current international standards efforts.

The applicable graphics standard is that for the
Computer Graphics Metafile (CGM) (see Refs. 7
and 8). However, the CGM is somewhat more
detailed and complex than required for the current

application. A simple alternative, here called the
standard display file, is given in Table 1.t

The first line of the standard display file

contains an identification string. Each subsequent
line of the file begins with an operation code

fpipe is used here in the context of a UNIX or MS-DOS

pipe.

$A similar concept has been in use at the author's home

Table 1: Standard Display File (.sdf) Codes

Code Operation parameterst

Move Absolute

Point Absolute

Draw Absolute

Move Relative

Point Relative

Draw Relative

Text

Set color

Set look-up table

Set pixel

New frame

Pause

Set resolution

Print message

X,Y

X,Y

X,Y

Ax, AY

Ax, AY

Ax, AY

Text string

red, green, blue

red bits, green bits,
blue bits

X, y, red, green, blue

xresolution, yresolution

Message string

t x ~ are floating point numbers in NDC; i.e., in the range

0 5 x, y 5 1.0. red, green, blue are floating point numbers in

the range 0 5 red, green, blue 5 1 with 0 E no intensity and

1 full intensity. Red bits, green bits, blue bits are powers

of 2 (see Ref. 1 for a discussion of look-up tables). This table

is taken from Ref. 1.

number, followed by the appropriate information
required by that operation. All coordinate values

are specified as floating point numbers in the range

0 5 x 5 1.0, 0 5 y 5 1.0. All items are separated
by commas. A simple standard display file for a
square is:

0, 0.05, 0.05

2, 0.95, 0.05
2, 0.95, 0.95

2, 0.05, 0.95

2, 0.05, 0.05

Using the macros discussed above the corresponding
code is:

The format is simple enough that a picture can be

easily modified or, in fact, generated using a text
institute for more than a decade.

TUGboat, Volume 10 (1989), No. 1

editor. The format also allows easy extension to
include local or additional functionality.

Conclusions

The graphics macros presented above provide
all the capability currently, and for the near future,
required to include publication quality line art
within source files. They also include all the
required capability to seriously begin experimenting
with the direct inclusion of halftone images within
TEX source files. Including publication quality
halftone images within source files requires
both further development of digital 'halftoning'
techniques and the general availability of higher
resolution output devices.

The Challenge

The Challenge is for the macro gurus to implement
the above TQX graphics macros and for the META-

FONT gurus to generate the required fonts. I'll be
happy to consult on the graphics aspects of the
development, to test the results and to implement
the filter program from .sdf format files to m.

Aerospace Engineering Department
United States Naval Academy
Annapolis, MD 21402, USA
E-mail: df rOusna .navy. mil

References

1. Rogers, David F. and Adams, J . Allan, Math-
ematical Elements for Computer Graphics, 2nd
Edition McGraw-Hill Book Co., New York, 1990,
Appendix A. (Available in August 1989.)

2. Rogers, David F. and Rogers, Stephen D., A
Raster Display Graphics Package for Education,
IEEE Computer Graphics & Applications, Vol. 6,
No. 4, April 1986, pp 51-58.

3. Rogers, David F., Procedural Elements for Com-
puter Graphics, McGraw-Hill Book Co., New
York, 1985.
Knuth, Donald E., The Wbook, Addison-Wesley
Publishing Co., Reading, MA, 1984.
Knuth, Donald E., Digital Halftones by Dot
Diffusion, ACM TOG, Vol. 6, pp 245-273, 1987.
Jarvis, J. F., Judice, C. N., and Ninke, W. H., A
survey of techniques for the display of continuous
tone pictures on bilevel displays, Comput. Graph.
Image Process., Vol. 5, pp 13-40, 1976.
Computer Graphics Metafile for the Storage
and Transfer of Picture Description Information
(CGM), IS0 8632-Parts 1 through 4: 1987; also,
ANSIIX3.122-1986.
Arnold, D.B., and Bono, P.R., CGM and CGI,
Springer-Verlag, Heidelberg, 1988.

A Portable Graphics Inclusion

Bart Childs
Alan Stolleis
Don Berryman

One of the serious limitations of current usage
is the lack of a portable inclusion of graphics.
We propose a means of making this possible. It
will require a little discipline on the creation of
drivers; the procedures outlined herein should make
it straightforward to add this to existing drivers.

Graphics inclusion has been a part of the
drivers from the Computer Science Department at
Texas A&M since soon after the initial release of
the earliest QMS-QUIC drivers. In these cases
it required significant positioning by the user and
therefore became dependent upon the particular
printer the document was destined for. This
violated the intent of the dvi file, namely being
device independent. Our previous graphics inclusion
was much like the "Ph.D. with a screwdriver"
concept.

It is my (Bart Childs) opinion that in spite
of the beauty, power, and widespread use of Post-
Script, it is not a suitable answer for output.
There are two reasons for this opinion:

rn A convenient manner for incorporating fonts
from METAFONT is not yet in the public
domain. PostScript downloading of bitmaps is
inconvenient at best!

rn The size of Postscript files is inordinately large,
and use of the system in networks both clogs the
network and makes the printing of documents
happen at a fraction of the rated speed of the
printer, especially if you use Computer Modern
fonts.

These comments should not be taken to imply
that the immense contribution of PostScript is
not appreciated. I think that Postscript is in
severe need of a binary mode. Another question
of relevance for de fncto standards is, will it be
good for three-dimensional graphics? Many other
questions need to be answered before we should
treat it as a standard.

We need only a few elements to enable portable
graphics inclusion. These elements are:

1. A standard template for the allocation of the
size of the graphical area in the document.

2. A standard means of putting the size of the
graphical area in the dvi file.

3. A standard means of communicating the "name"
of the file containing the graphics.

