
TUGboat, Volume 10 (1989), No. 1

APE - A Set of 'I)ijX Macros
To Format Ada Programs

Sriram Sankar*

1 Introduction

This report describes a set of macros designed for
the purpose of formatting Ada [Ada831 programs in
Q X 1 . These macros were implemented by the au-
thor in early 1987, and they have been refined a few
times since. They have also been extended for the
language extensions of Ada developed by the Pro-
gram Analysis and Verification Group at Stanford
University. Some of these language extensions are
Anna [LvHK084] and TSL [HL85]. These macros
exist as one collection in a file which is included into
the document using the \ input command. This file
is available on request from the author.

The design of the macros was motivated by the
programexample environment in Scribe. It is for
this reason that they have been named APE, which
is an acronym for "Ada Program-Example". The
macros are of two kinds - global macros and lo-
cal macros. The global macros are visible through-
out the scope in which the \ input command has
been inserted. The most important global macros
are \apebegin, \apeend and \ap. \apebegin

. . . \apeend defines an environment in which a com-
plete Ada program can be formatted, while \ap is
a macro with one argument which is used for in-
sertion of program text within ordinary text. The
local macros are available for use only within en-
vironments defined by \apebegin . . . \apeend and
within the program text of arguments to \ap.

2 Formatting Ada Programs using APE

The example below shows a means of formatting a
procedure EXCH. The following text:

\apebegin

\Procedure EXCH(X,Y : \ I n \Out INTEGER) \Is

T : INTEGER;

\cm(2.5in)(T i s a temporary var iab le .)

\Begin
T := X ; X := Y ; Y := T ;

\End EXCH;

\apeend

*Department of Computer Science, Stanford Uni-
versity, Stanford, California 94305.

EMail: sankar@score.stanford.edu.
Phone: (415)723-4962.
'These macros can easily be rewritten for other

languages.

produces the following cutput:

procedure EXCH(X,Y : in out INTEGER) is

T : INTEGER;
- - T is a temparary variable.

begin
T := X; X := Y; Y := T;

end EXCH:

The text that produced the very first line in this
section is shown below:

The example below shows a means of

formatt ing a \ap(\Procedure EXCH).
The following t e x t :

As is obvious from the above example, keywords
are entered as macros whose names are the same
as the keywords (with the first letter converted to
upper-case). Apart from \apebegin, \apeend and
\ap, the keyword macros are the only global macros.
Also, comments are inserted using the macro \cm

which takes two arguments-the first is the maxi-
mum width allowed for the comment, and the second
is the actual comment itself. If the comment does
not fit in one line, it is split into lines each of the
specified width. Each of the lines is prefixed by the
Ada comment symbol -- in the output2. If only
the comment symbol is desired (with no comment
following it), the macro \- can be used. Again, as
is obvious from the above example, all spaces and
carriage-returns are significant everywhere except
within the arguments of the macro \cm.

The very first thing that one would like to do
is to choose their own favorite fonts for the various
Ada constructs. To do this, the following macros
should be redefined after the \ input command:

\apekeywordf ont \apkeywordf ont

\apecommentfont \apcommentfont
\apebodyf ont \apbodyf ont

Each of the above macros defines a font. Those
that are of the form \ape.. . define fonts for the
\apebegin . . . \apeend environment, while the oth-
ers define the fonts for the \ap macro. In addition,
the following macros can be redefined to specify the
horizontal space that each space character inserts;
the vertical space that each carriage-return inserts;
and the margin at the beginning of each line:

2 ~ o r a similar use of this feature see [Des84].

90 TUGboat, Volume 10 (1989), No. 1

The range delimiter (. .) in Ada is obtained us-
ing the macro \ . . The meanings of - (underscore)
and \- have been interchanged. Hence underscores
in Ada identifiers can be entered without a preced-
ing backslash. However a backslash is required when
the underscore is used for subscripting. Most other
characters and macros have their usual plain
meaning. For example, math mode has to be entered
for subscripting and superscripting, and to obtain
characters like & and # one has to enter \& and \#

respectively. There is one exbeption - math mode
need not be entered to get a small space; one can
enter \ , directly.

Page-breaks are by default disabled within
the \apebegin . . . \apeend environment. How-
ever, there are macros that can enable or disable
page-breaks within this environment. The macro
\bhinge enables page-breaks, while the macro
\ehinge disables page-breaks. Both \bhinge and
\ehinge have global effect -even if they occur in-
side a group, they continue to have effect outside the
group. \bhinge and \ehinge can be used within
comment text (the second parameter to \cm) also.
When used within comments, these macros also in-
sert a space at their location. It is sometimes useful
to specify the particular lines at which page-breaks
should be enabled. For this there is a macro - \\.
\\ has to be entered at the end of a line just be-
fore the carriage-return (<CR>). Actually, \\<CR>
is equivalent to \bhinge<CR>\ehinge. Note that
enabling page-breaks does not mean that 'QX will
actually move over to a new page at these loca-
tions; it only means that l)$ can move over to a
new page if its page-breaking algorithms decide that
this is necessary. Commands that force page-breaks
(like \eject) will not work within the \apebegin
. . . \apeend environment.

There is also a tabbing facility that can be used
within the environment \apebegin . . . \apeend.
This is quite similar to the tabbing facility of 'QX.
For this, there are three more commands, the most
important of which is the character &. This com-
mand shifts to the next tab position. If the current
text has overshot this position, then it will back up
to the t a b position. However, if there is no tab po-
sition to skip to, then a new tab position is cre-
ated at the current distance from the left margin. A
carriage-return moves back to before the first tab.
The command \kill at the end of a line inhibits
output of the current line, but any new tab posi-
tions created in this line remain set. The command
\actabs clears all the current tab settings. An im-
plicit \actabs is performed by \apebegin. Tab-
bing commands cannot be used within comments

created using \cm. Any scope that begins within the
\apebegin . . . \apeend environment must be ended
before the end of the line or the next &, whichever
is earlier.

Just as in the case of T)$, these tabbing com-
mands format text into a box of appropriate width
and inserts \hss at the end of the text. Hence it is
possible to achieve interesting results like centering
text between two tab positions (by inserting glue
more infinite than \hss on both sides of the text).

To conclude, three more examples are shown
below. The first example demonstrates multi-line
comments; the second example shows the use of
tabbing and different fonts; and the third exam-
ple shows how centering about a column can be
achieved.

Example 1:

The following input:

\apebegin

\Procedure CLOSE(F1LE: \In \Out FILE-TYPE);

\cmC2.5in)CSevers the association

between the given file and its

associated external file. The

given file is left closed. The

exception C\apebodyf ont STATUS-ERROR)

is raised if the given file is

not open. 3
\apeend

produces:

procedure CLOSE(F1LE: in out FILE-TYPE);
-- Severs the association between the given
-- file and its associated external file. The
-- given file is left closed. The exception
-- STATUS-ERROR is raised if the given file
-- is not open.

Example 2:

The following input:

C\def \apekeywordf ontC\normalsize\bf 3
\def \apebodyf ont(\normalsize\it)

\def \apehspaceCO .5em)

\apebegin

\If n < r &\Then n := n + I ;

&\Else &\Begin print-totals; n := 0;

&&\End ;

\End \If;

\apeend)

produces:

TUGboat, Volume 10 (1989), No. 1

if n < r t h e n n : = n + 1 ;

else begin print-totals; n := 0 ;

end;

end if:

Example 3:

The following input:

\apebegin

\Type DAY \Is (&WEDNESDAY&, &\kill
\Type DAY \Is (&\hfill(SUNDAY)\hfill&,
&\hfill(MONDAY)\hfill&,

&\hfill(TUESDAY)\hfill&,

&\hfill(WEDNESDAY)\hfill&,
&\hfill(THURSDAY)\hfill&,

&\hfill(FRIDAY)\hfill&,

%\hfill(SATURDAY)\hfill&&);

\apeend

produces:

type DAY is (SUNDAY ,
MONDAY ,
TUESDAY ,

WEDNESDAY,
THURSDAY ,

FRIDAY ,
SATURDAY);

3 Conclusions

The APE macros have been used extensively by the
author and other members of the Program Analy-
sis and Verification Group at Stanford. It has been
used to format examples in two books and in many
papers. No problems with its use have been encoun-
tered so far. The author invites comments and sug-
gestions for the improvement of this set of macros.
The complete listing of the macros (for Ada without
any extensions) is provided in the Appendix with
detailed comments explaining the various aspects of
the macro.

References

[Ada831 The Ada Programming Language Ref-
erence Manual. US Department of
Defense, US Government Printing Of-
fice, February 1983. ANSI/MIL-STD-
1815A-1983.

[Des84] Jacques DCsarmCnien. How to run T@
in a French environment: hyphenation,
fonts, typography. TUGboat, 5(2):91-
102, 1984.

[HL85]

[LvHK084]

Appendix

David P. Helmbold and David C. Luck-
ham. TSL: task sequencing language.
In Ada in Use: Proceedings of the Ada
International Conference, pages 255-
274, Cambridge University Press, May
1985.

David C. Luckham, Friedrich W.
von Henke, Bernd Krieg-Briickner, and
Olaf Owe. Anna-A Language for
Annotating Ada Programs. Techni-
cal Report 84-261, Computer Systems
Laboratory, Stanford University, July
1984. (Program Analysis and Verifica-
tion Group Report 24.)

A The APE Macros

Editor's note: These macros have been reformat-
ted for presentation in two columns. Problems aris-
ing in macros re-keyed from the text below should
first be referred to the TUG office. The macros
(in their original form) are available for anony-
mous FTP at Score. Stanford. edu in the directory
<TEX. TUGBOAT>.

% Copyright 1988 by Sriram Sankar.
%
% GLOBAL DEFINITIONS:
%
% The fonts for the keywords.
\def\apekeywordfontC\large\bf)

\def\apkeywordfont{\normalsize\bf)

% The fonts for comments.
\def\apecommentfontC\normalsize\sl)

\def\apcommentfont{\normalsize\sl)

% The default fonts for everything else.
\def\apebodyfont{\small\rm)

\def\apbodyfont{\small\rm)

% The space generated by the <space> character.
\def\apehspace{0.65em)

\def\aphspaceiO.5em)

% The space inserted between each line
\def\apevspace{Opt)

% The space left at the beginning of each line.
\def\apelmargin{Opt)

The above ten macro definitions can be

redefined within the document as many

times as desired. The default settings

above are in terms of LaTeX macros

(e.g. \large, \small, etc.). Note: These

are the only LaTeX dependencies in this

file.

TUGboat, Volume 10 (1989), No. 1

\catcode'\!=ll

\catcode'\--I=Q

% Tabs will now be ignored, so they can be
% used to format the macros below.
%
% The following macros are for formatting
% the Ada keywords. Note that they accept

% the keyword as an argument in LOWER-CASE.
% TO format keywords in other ways
% (e.g. upper-case) , one could either change
% the case of these keyword arguments below,
% or define \apekeywordfont in such a way
% that it changes the case of its argument
% appropriately.

\def \Package{{\ ! keyword{packageW

\def \Pragma{{\ ! keyword{pragma)))

\def \Private{{\ ! keyword{privatem

\def\Procedure{{\!keyword{procedure)))

\def\Raise{{\!keyword{raise)))

\def \Range{{\ ! keyword{range)))

\def\Record{{\!keyword{record)))

\def\Rem{{\!keyword{rem))>

\def\Renames{{\!keyword{renames)))

\def\Return{{\!keyword{return)))

\def \Reverse{{\ ! keyword{reverse>>>

\def\Select{{\!keyword{select)))

\def \Separate{{\! keyword{separatem

\def\Subtype{{\!keyword{subtype)))

\def \Task{{\ ! keyword{task)))

\def\Terminate{{\!keyword{terminate)))

\def\Then{<\!keyword{then)))

\def \Type<{\ ! keyword{type))>

\def\Use{{\!keyword{use~))

\def\WhenC{\!keyward{when))>

\def\While{{\!keyword{while)))

\def With{{\ ! keywordCwith)))

\def\Xox{{\!keywordhor)))

%
% Some more global definitions follow:
%
\def \ ! lbrC\/$ ($1
\def \ ! rbrC\/$) $1
\def\!str{\/$*$)

\def \ !pis<\/$+$)
\def\!min{\/$-$1

\def\!col{\/$:$)

\def \ ! aclC\/$; $)

\def \ ! les<\/$<$)
\def \ ! greC\/$>$)
\def \ !bar{\/$ I $)
\def \ ! equi\/$=$)
%
\def\!sla{\/{\slC/>H

\def\!dqt{{\/\raise.2ex\hbox{\tt{")>))

\def \ !dots{\/. {\hskiplmm).)

\def \ ! commentTL
{\apecommentfont\rm--\thinspace--))

\def\!hinge{\vfil\penalty5000\vfilneg)

\def \ ! space{\hskip\apehspace)
\def\!underscore{\underbar{\!space))

%
% Now follow the global definitions for the
% tabbing commands. First a set of dimen,
% count and box registers are allocated.
% The number of dimen registers limit the
% total number of tabs permitted.
%
\newdimen\!apetabi

\newdimen\!apetabii

\newdimen\!apetabiii

\newdimen\!apetabiv

\newdimen\!apetabv

\newdimen\!apetabvi

TUGboat, Volume 10 (1989), No. 1

\newbox\!apelinebox

%
% Dimen register i stores the distance from
% the tab stop (i-1) to the tab stop i.
% \!apetotaltabs maintains the total number
% of tabs currently set. \!apetab maintains

% the tab stop that will be reached if
% another '& ' is encountered. The box

% registers are explained below.
%
% Between the beginning of lines, tab stops
% and the end of lines, text is formatted
% into the box \!apetabbox and padded on
% the right with the glue \has. The macro

% \!apebbox is what needs to be done at the
% beginning of each of these boxes.
%
\def\!apebbox{%

\ifnu\! apetab>\! apetotaltabs

\setbox\!apetabbox=\hbox

\endcanme

\fi

\bgroup

1
%
% The boxes mentioned above (that are stored
% into \!apetabbox) are put together into
% another \hbox called \ !apelinebox. This
% box is output once a full line has been
% read from input. The macro \!apebline

% does what is needed at the beginning of
% each input line, while the macro \!apeelhe
% does what is needed at the end of each
% input line.
%
\def\!apeblineC%

\noindent

\global\ ! apetab=1

\setbox\ ! apelinebox=

\hbox\bgroup

\hskip\apelmargin\!apebbox

3
%
\def\!apeelineC%

\hss\egroup

\box\ ! apetabbox

\egroup

\box\!apelinebox

3
%
% The macro \!apekill is similar to
% \ ! apeeline, except that it does not output

% the contents of \!apelinebox. In addition.

% this macro also performs a \!apebline, thus
% getting ready for the next line of input.
%
\def \ ! apekillfl

\hss\egroup

\box\!apetabbox

\egroup

\!apebline

3
%
% The macro \!apetabskip is expanded when an
% '& ' is encountered in the input file. It

% ends the current \!apetabbox, and if a new
% tab stop needs to be set, it increments the
% counters appropriately and sets the
% appropriate dimen register to the width of
% \ ! apetabbox. Finally, \! apebbox is invoked

% to start off a new \!apetabbox.
%
\def\!apetabskip{%

\hss\egroup

\ifnum\ ! apetab>\ ! apetotaltabs

\global\advance\!apetotaltabs by 1

\global\csnme

!apetab\romannumeral\!apetotaltabs

\endcsnme=\wd\!apetabbox

\fi

\box\!apetabbox

\global\advance\!apetab by 1

\ ! apebbox
>

%
\def \ ! apecr{%
\strut\par

\ ! break
\vskip\apevspace

3
%
\def\!par{\!apeeline\!apecr\!apebline)

%
% The following global definitions are for
% formatting Ada comments. The macros \!cma

% and \!cmb are used in the definition of the
% \cm macro later. The comment text is split
% at all \bhinge's and \ehingels. Each

TUGboat, Volume 10 (1989), No. 1

portion of the comment is then put into a

\vbox separately and output one after the

other. Actually all but the last line of

% each \vbox is output. The last line is

% included at the beginning of the next \vbox.
% At the end of it all, there will be one more
% line to output. \!cmb explicitly outputs

% this line, and moves back to the beginning
% of this line. The box registers below are

% used to store the boxes created during this
% process. Dimen register \!cmtpos contains

% the distance of the comment from the left
% margin while \!cmtwd contains the width of
% the comment.
%
\newif\ifnonvoid

\repeat

\fi

>
%
% The following two macros \!cmtbhinge and

\newdimen\!cmtwd

%
% \!cmtout is the output routine. It assumes % \!cmtehinge end the current comment box
% that the \hboxes to be output are enclosed % being created. They then pull out the

% last line from this box and ship the
% rest of the box to \!cmtout. The value

% within a \vbox in \!cmti. It consists

% mainly of two loops. The first loop

% reverses the order of the \hboxea in \!cmti % of \!break is then modified to ensure that
% the correct penalty value is inserted at
% the end of the next line. They then start

and puts this into a \vbox in \!cmtv. The

second loop pulls out the \hboxes from

\!cmtv and outputs them.

%
\def\!cmtout{%

\setbox\ ! cmtii=

\vboxC

\unvbox\ ! cmti

\global\setbox\ ! cmtiii=\lastbox

% off a new comment box after inserting the
% last line of the previous box and a space
% character at the beginning.
%
\def\!cmtbhingei%

\egroup

\setbox\!cmtii=

\vbox{

\unvbox\!cmti

\ ! cmtout

\global\def \ !break<\ !hinge)%
\setbox\! cmti=

\vbox\bgroup

\hsize=\ ! cmtwd

\noindent\apecommentfont

<)\unhbox\!cmtviC) %

TUGboat, Volume 10 (1989), No. 1

3

%
\def\!cmtehingeC%

\egroup

\setbox\ ! cmtii=

\vboxC

\unvbox\ ! cmti

\global\setbox\!cmtiii=\lastbox

\unskip\unpenalty

3%

\setbox\!cmtvi=

\hboxC%

\unhbox\!cmtiii

\unskip\unskip

\unpenalty

3%
\setbox\!cmti=\box\!cmtii

\ ! cmtout
\global\def\!breakC\nobreak~%

\setbox\!cmti=

\vbox\bgroup

\hsize=\!cmtwd

\noindent\apecommentfont

{3\unhbox\!crntviC3 %

3
%
% \!cma begins the comment by finishing off
% the boxes being created and then outputting
% them. It also measures the width of the

% box output to determine the value of
% \!cmtpos.
%
\def\!cmaC%

\egroup
\setbox\!cmti=\hboxC\unhbox\!apetabbox)%

\box\ ! cmti

\egroup
\ ! cmtpos=\wd\ ! apelinebox
\hbox to Opt{\box\!apelinebox\hss~%

3
%
% \!cmb takes over from \cm. It starts q f P

% the first comment box and finishes
% off the last comment box. If there is

% only one comment box (no \bhinge or
% \ehinge in between), then it starts and
% finishes this one box. It then pulls

% out the last line of the last box and
% ships the rest of the box to \ ! cmtout.

% It then outputs the last comment line
% and moves to the beginning of the line
% in which the last comment line was output.
%
\def\!cmb#l#2C%

\ ! cmtwd=#i%
\setbox\! cmti=

\vbox\bgroup

\hsize=\!cmtwd

\noindent

\apecommentfont

C3#2\egroup
\setbox\!cmtii=

\vbox<

\unvbox\!cmti

\global\setbox\!cmtvi=\lastbox

\unskip

\unpenalty

)%

\setbox\!cmti=\box\!cmtii

\ ! cmtout
\noindent

\hbox to Opt{%

\hskip\!cmtpos

\!comment.O\!space

\box\ ! cmtvi

\has

3%
\endgroup

\ ! apebline
3

%
% The following global definition of \!ap is
% used in the definition of the \ap macro
% later. As in the case of \!cmb and \cm,

% there is an \endgroup in \!ap whose
% corresponding \begingroup is in \ap. In

% this case, there is also a corresponding
% \apebegin in \ap.
%
\def \ ! ap#l{#l\apeend\endgroup{>>
%
% We cannot have the sequence "\let=\!equl'
% within the body of the ape macro since
% the will not be scanned with the

% correct category code. Hence, the macro

% \!defequ is defined in an environment
% where ll=tl has the correct category code,

% and then this macro is used within the body
% of the ape macro. \!defequ is now defined

% as a global macro.
%
C
\cat code' \==\active

\gdef\!defequC\let=\!equN

3
%
\catcode1\!=12

\catcode'\^-1x10

%
% END OF GLOBAL DEFINITIONS.
%
% NOW THE MACRO DEFINITIONS:
%
% The macro has to be defined in an
% environment with the category codes set
% correctly. This environment is first set
% up below, and then within this environment,
% the macros are defined.

TUGboat, Volume 10 (1989), No. I

%
i% The macro definition environment
%
% Firstly, Ilo~ter~~ macros cannot occur

% within any macro expansions. The only

% such macro that occurs in the macros
% below is \+ . Hence this is redefined to

% its usual value. The effect of this

% redefinition just changes the status of
% \+ to now be a non-"outer" mecro.

%
\def\+i\tabalign>%

%
% Necessary changes to category codes are
% made right now since category codes
% are used while scanning and the macro
% is scanned at definition time, and not
% at macro expansion time.
%
\catcodel\(=\active%

\catcode' \)=\active%

\catcodel*=\active%

\catcodet\+=\active%

\catcode'\-=\active%

\catcodel\:=\active%

\catcode' \ ;=\active%
\catcode'\<=\active%

\catcode'\>=\active%

\catcode'\l=\active%

\catcodec\/=\active%

\catcode' \"=\active%

\catcode' \--M=\active%

\catcode'\ =\active%

\catcode'\-=\active%

\catcodel\!=ll%

\catcode' \&=\active%

%
\gdef\apebegin{%

\begingroup%

\global\def \ ! breaki\nobreak)%
%
% First the category codes of the characters
% to be redefined are made active.
%
\catcode'\(=\active%

\catcodei\)=\active%

\catcode6*=\active%

\catcodeC\+=\active%

\catcode1\-=\active%

\catcode1\:=\active%

\catcodel\;=\active%

\catcode'\c=\active%

\catcodet\>=\active%

\catcode'\ l=\active%

\catcode'\/=\active%

\~atcode'\~=\active%

\catcode'\--M=\active%

\catcode'\ =\active%

\catcode'\-=\active%

\catcodeC\!=ll%

\catcode'\&=\active%

%
% Now each of these characters is given
% its definition.
%
\let (=\ ! lbr%

\let)=\!rbr%

\let*=\ ! str%

\let+=\!pls%

\let-=\!min%

\let:=\!col%

\let;=\!scl%

\let<=\!les%

\let>=\!gre%

\letl=\!bar%

\let/=\!sla%

\lettt=\ !dqt%

\let--M=\!par%

\let =\ ! space%
\let-=\!underscore%

\cat code ' \--A=S\def \-{--A>%
%
% The above two lines interchange the
% meanings of - and \-. To do this, a new

% subscript character -A is defined, and
% then \- is defined as a macro to
% expand to -A.
%
\let&=\ ! apetabskip%

7,

% Now follows the remaining macro
% declarations needed to complete the \ape
% environment.
%
\def\.C\!dots)%

\def\,C\thinspacei))%

\def\-{\!comment>%

%
\def \bhingei\global\def \ !break{\ !hinge>)%

\def \ehingei\global\def \ ! breaki\nobreak))%
\def\\'-Mi\bhinge--M\ehinge>%

\def\actabsC%

\global\ ! apetotaltabs=O%

\global\!apetab=ii)>% end \def of actabs

\actabs%

\def\kill-^Mi\!apekill)%

\def\!keyword{\apekeywordfont)%

%
% Following is the \cm macro definition.
% This macro eventually lets the macro
% \!cmb take over so that the text
% following is read in with the correct
% category codes. The redefinition of

% \+ below is for the same reason as
% before: to convert it from an outer
% to a non-outer macro.
%
\def\+{\tabalign)%

TUGboat, Volume 10 (1989), No. 1

% The category codes are temporarily
% changed back to their original values.
%
\catcode1\(=12%

\catcode'\)=l2%

\catcode1*=i2%

\catcode'\+=l2%

\catcode'\--12%

\catcode'\:=l2%

\catcode1 \ ;=la%
\catcode'\<=l2%

\catcode1\>=12%

\catcode'\l=i2%

\catcodes \/=la%

\catcode ' \''=12%
\catcode'\--M=5%

\catcodes \ =lo%
\catcode'\!=l2%

%
\def\bhinge{\!cmtbhinge)%

\def \ehinge{\ ! cmtehinge>%

%
\ ! cmb>%
%
% Now = is redefined. Had this been done

% earlier, then it would have affected
% the previous definitions, since many
% of them contain =.

%
\catcode'\==\active\!defequ%

%
\apebodyfont\!apebline%

%
1% end of definition of \apebegin

\gdef\apC\begingroup%

\def \apekeywordf ont{\apkeywordf o n t N

\def\apecommentfontC\apcommentfont3%

\def \apebodyf ont{\apbodyf ant>%
\def\apehapace{\aphspace)%

\def\apelmargin{Opt)%

\apebegin\ ! ap%

3%

%
% The reason for letting \!ap take over
% from \ap at this point is to make TeX
% scan the argument with the correct
% category codes.
%
3% This ends the environment in which the

% macros are defined.
1

Contents of Archive Server

as of 16 January 1989

Michael DeCorte

Clarkson University

Several changes to the I P m Archive have been
made since the last TUGboat. It has been split

into several different subarchives: I P ' style files;

'!&X style files; AM-TfjX style files; B I B ~ X style
files; BIB^ 0.98 style files; Tf$ programs. Also

there are several new archives: A M - m source;

BIB'I~EX source; CM fonts source; IK&X source; T@
documentation; m inputs; 'IfEX source; Tf$ tests;

TUGboat files; m h a x digests; 'MaG digests;

U K W digests.
As always, submissions are encouraged. If you

do submit a file please include at the top of the file:

your name; your email address; your real address;
the date. Also please make certain that there are

no lines in the file longer than 80 characters as some
mailers will truncate them. Mail should be sent to

mrdQsun.soe.clarkson.edu

archive-managementQsun.soe.clarkson.edu

For Internet users: How to ftp

An example session is shown at the bottom of
the following page. Users should realize that ftp

syntax varies from host to host. Your syntax may

be different. The syntax presented here is that
of Unix ftp. Comments are in parentheses. The

exact example is for retrieving files from the IP'IfEX

Archive; the syntax is similar for the other archives,
only the directories differ. The directory for each
archive is given in its description.

Non-Internet users: How to retrieve by mail

To retrieve files or help documentation, send mail to
archive-server0sun.soe.clarkson.edu with the

body of the mail message containing the command

help or index or send. The send command must

be followed by the name of the archive and then
the files you want. Users who are not in the uucp

maps database are strongly encourage to include a

path command followed by a path from Clarkson

to you in domain style format. If you don't
include a path command, your mail may not get

to you and will definitely be delayed as Michael
will have to mail it by hand. You should realize

that Clarkson does not have a uucp connection;
therefore you must send it to an Internet or Bitnet

