
TUGboat, Volume 10 (1989), No. 2

There is no integrated text editor. O m is
distributed with CEdit, a public domain DA
editor written by Leonard Rosenthol.
0- requires a Postscript printer.
\special handling is fairly unsophisticated.
0- allows the inclusion of a PostScript file
along with optional code prefixed to the file.
There is currently no support for previewing
PICT or EPSF files.
Previewing DVI pages is not as fast as I'd like,
particularly on a Mac Plus.

Future development of O m is likely but will
occur at a fairly sedate pace unless I can find people
prepared to help with the programming or provide
financial support. Send your bug reports, comments
and offers of help to the address shown at the end
of this article.

W h e r e t o get 0-

The following people have volunteered to help
distribute O m . Please get in touch with the
person nearest you. By the time you read this
article it is likely that O m will also be available
electronically from various Mac archive sites. People
without access to email should try their local Mac
user group.

In Australia and New Zealand:

addieBrhea.trl.02 Ron Addie, Melbourne
keady@madvax.uwa.oz Grant Keady, Perth
rks105@phys6. anu. oz Russell Standish, Canberra
cccO32u@aucc434i. aukuni. ac .nz R. Fulton, Auck.

In the USA:

c3arBzaphod.uchicago. edu Walter Carlip, Chicago
tnielandBaamrl.af.mil Ted Nieland, Dayton
spencerBcis .ohio-state. edu S. Spencer, Columbus

In the UK and Europe:

abbottpBaston.ac.uk Peter Abbott, UK
texlineQvaxa. cc . ic . ac . uk Malcolm Clark, UK
nikunenBcc . helsinki . f i Martti Nikunen, Helsinki

I'd like to hear from people interested in distributing
O m in other countries. Here's how to get in
touch:

Andrew Trevorrow
Kathleen Lumley College
North Adelaide, SA, 5006, Australia

Telephone: (08) 267 1060
Email: atrevorrowQg . ua . oz (ACSnet)

Tutorials

\ s t r i n g and \csname

Stephan v. Bechtolsheim

This article discusses \ s t r i n g and \csname to
convert back and forth between strings and tokens.
To control loading macro source files in a convenient
way, I will show an application of \csname. I
will also discuss cross referencing which relies on
\csname.

Converting Tokens t o Strings, \ s t r i ng

" \ s t r ing <token>" causes l)$ to read the to-
ken <token> following \ s t r i n g without expansion.
Subsequently <token> is replaced by a string r e p
resenting it. Let me start with some examples.

1. C\tt \s tr ing\hskip) prints \hskip.
2. (\ t t \ s t r i ng$) prints $.

3. (\ t t \ s t r i ng \$) prints \$.

4. (\ t t \ s t r ingC) prints (.
5. (\ t t \ s t r ing)) prints 3.

Also note:
1. The escape character printed in the previous

examples is the backslash. Any other charac-
ter could be printed by assigning a different
character code to \escapechar. The default is
obviously \escapechar = ' \\, which assigns
the character code of the backslash. If you
change \escapechar to a negative value, then
no escape character is printed:
\escapechar = -1 \s t r ing\xx prints xx.

2. There is an important difference between 'xx'
entered as an ordinary string and 'xx' gen-
erated using \ s t r i n g as just shown. All
characters generated by \ s t r i n g have the cat-
egory code 12 ("other"), whereas 'x' ordinarily
has category code 11 ("letter").

3. Observe the use of the typewriter font (\ t t) .
If you use the roman font and simply write
\ s t r ing\hskip the output reads "hskip and
not \hskip, as expected. The reason for this is
that the roman font contains an opening double
quote in the position where the typewriter font
contains a backslash.

4. \ s t r i n g converts only the token following it
into a string. For instance, to print two
consecutive $$ you have to repeat \ s t r i n g and
enter C\t t \s t r ing$\str ing$). If you enter
only C\t t \s t r ing$$) the first dollar sign is

TUGboat, Volume 10 (1989), No. 2

printed due to \string, the second one causes
'QX to enter math mode.
An important application of \string is to
write control sequences to a file using \write.
Any control sequence which should be written
to a file (instead of being expanded) must be
prefixed by \string. \noexpand can also be
used.

Converting Strings into Tokens,
\csname . . . \endcsname

General Discussion. The \csname instruction
is, in a certain sense, the inverse operation of
\string. It converts a sequence of characters into
one token. Observe that I said "characters" and
not "letters." Using \csname allows you to build
names for tokens that contain nonletter characters
such as digits. The ordinary way to write control
sequences restricts the user to control words (the
escape character followed by any number of letters,
but letters only) and control symbols (the escape
character followed by one and only one nonletter
character).

The \csname control sequence is applied as
follows. After \ csname, list the characters naming
the token. You also may use macros, but only
those which expand to characters. The sequence
of characters forming the name of the token is
terminated by \endcsname.

Here is an example. To name the token
"\?-a*l7 .g" write

\csname ?-a*l7. g\endcsname

In the rest of this article, please allow a certain
looseness with respect to notation. Ordinarily, if
you see a piece of T)i$ source like \?-a*l7 .g, you
would interpret this as \? followed by 7 single
character tokens. In this article, it stands for one
single token.

Depending upon the context of the above
example, may try to expand the token named
and will have to be able to find a corresponding
macro definition (or any other type of definition).
Here is how one can define such a token.

\expandafter\def
\csname ?-a*l7.g\endcsnameU

Replacement text of macro.

3

The \expandafter suppresses the \def temporarily
to allow 'l&X to compute the name of the token
\?-a*17.g. Then \def is re-inserted in front of
this token. The macro definition now proceeds as
any other macro definition. If \expandafter were

omitted, 'I)$ would define a macro with the name
\csname.

As mentioned before it is legal to call a macro
inside a \csname . . . \endcsname sequence as long
as the macro expands to characters only. Counter-
registers can also be used:

This example is equivalent to forming the same
token using. \csname ZZ-4-ABC\endcsname.

I will later discuss two applications of \csname.
One will define a macro \InputD to load macro
source files, and the other uses \csname for cross-
referencing macros.

\csname and \relax. Assuming that n o preced-
ing definition for \xx is given, when ?jEX executes
the following code:

You may be surprised to see that the first line does
not generate an LLundefined control sequence" error,
whereas the second line does. The reason is that
undefined tokens generated by \csname are made
equivalent to \relax by m. The above code
fragment is therefore equivalent to:

On the other hand, in the following examples:

\def\xxCThis is fun)

\csname xx\endcsname

\xx

\expandafter\def\csname xx\endcsnameC%

This is fun%

3
\csname xx\endcsname

\xx

"This is fun" is printed four times.
In other words, if a token named using \csname

is undefined, it is equivalent to \relax. This fact

will be used in definition of \InputD (next section).

\InputD: Loading Macros Conveniently

The Problem. I personally like to divide my
macro sources into many small macro source files.
I load only those macro source files that I really
need. Here is a problem frequently encountered in
this context:

1. Assume that at the top of a main source file,
main.tex, you load macro file A.tex. This

TUGboat, Volume 10 (1989), No. 2 205

macro file in turn uses macros from another
macro source file B . t ex.

2. Assume in addition that you load macro source
file C. tex in main. tex, and that C. tex also
uses macros from B . tex.

If you load both A. tex and C. tex in your main
source file, and both A. tex and C . t ex load B . t ex
using \input, then, of course, B. tex will be loaded
twice, which is undesirable.

Using \InputD. I will now explain how to de-
fine a macro \InputD having one argument, the
name of a file, which loads the file only if the
file was not loaded before. In other words, in
A. tex and C . tex you request B . tex to be loaded
via \InputDCB. tex). Only the very first time is
\InputDCB . tex) equivalent to \input B . tex; sub-
sequent times, \InputDCB. tex) does nothing (ac-
tually, in the macro definition below, a message is
generated saying that B. tex was not loaded again).
The macro \InputD does all the bookkeeping.

Note that you must always use this macro to
load macro source files in order to get the effects
described here. After using the ordinary \input
B . tex (bypassing the bookkeeping of \InputD), 'TEX
has no record of the fact that B.tex was already
loaded, and a later occurrence of \InputDCB.tex)
will cause l&X to load B.tex again if this is the
first call of \InputD with argument B. tex.

The Workings of \InputD. When this macro is
called, its argument, a file name, will be used to
form a token as follows. A prefix, InputD-, and
the file name will be concatenated. For instance,
\InputD(B.tex) causes l&X to form the token
\InputD-B. tex. A test is then performed to
determine whether this token is already defined.
If it is (which will mean the file B .tex is already
loaded), nothing is done. On the other hand, if this
token is undefined (this is true only the very first
time \InputD is called with argument B . tex), the
macro will define token \InputD-B.tex and load
file B . tex. Any subsequent call \InputDCB . tex)
will find the token InputD-B.tex defined. The
actual definition of this token is irrelevant. The
macro \InputD simply defines the token to expand
to nothing (i.e., the replacement text is empty).

I think that using this macro offers a very
flexible and powerful approach to maintaining lots
of macro source files. There is no longer a need
to do any bookkeeping of which source files have
been loaded: if you need a macro source file, load
it using \InputD. Source files will be loaded only if
they have not been loaded before.

The Definition of \InputD. The definition of
the \InputD macro is amazingly simple. Note that
\ifx absorbs without expansion the two tokens
following it, and then compares the two tokens.
\expandafter is used first to compute the token
InputD-B . t ex (assuming the argument is B . tex),
and then the \ifx compares this token with \relax.
As noted before, if the token is undefined, it is
equivalent to \relax.

\def\InputD #I<%
\expandaf ter\if x

\csname InputD-#l\endcsname
\relax

% Equivalent to \relax: not
% defined before ! Define now.
\expandafter\def

\csname InputD-#l%
\endcsnameO%

% Read in macro source file.
\input #1

\else

% Loaded already.
% Print message.
\message<\string\InputD :

file 11#111 was loaded

before. 1%
\f i

1

Cross-Referencing Macros

The following discussion is more complicated than
the previous application for \csname. This is a

brief sketch only (see my book "T)$ in Practice"
for further information).

The User Interface. Let me fist explain how
you can use the cross-reference macros which I will
present later. The following should be familiar
to every user of L4m, the main difference being
that I use macros which begin with capital letters.
To identify document entities such as chapters,
sections, figures, etc., labels are used. Such labels

consist of arbitrary characters like f-structure for
a figure describing the structure of some piece of
equipment.

The user has the following three macros at
her/his disposal (all three have one parameter, a
label) :

1. \Label is used to define a label. For instance,
\LabelCf -structure) labels the figure men-
tioned above, associating a symbolic reference
("f -structurev) with an appropriate numeric
reference (say, "3.5").

TUGboat, Volume 10 (1989), No. 2

\Ref expands to the figure number of the figure
whose label is given as an argument. If you
want to print some text like "see Fig. 3.5,"
then you would not enter %ee Fig. -3.5,"
because you would have to change this text
if the figure number changes (for instance, to
3.6, because you have inserted another figure
before this figure). Instead you enter "see
Fig. '\Ref (f -structure>," and let QX do
the work.
\PageRef expands to the page number of the
figure labeled by the name you provide. Again
this page number will automatically change, if
the figure migrates to a different page due to
modifications of the text. Your input might
read "p . "\PageRef Cf -structure>" and print
"p. 67'' if that is the page where the figure with
the specified label is placed.

Retrieving the Cross-Reference Information.

The cross-reference information is read in at the
very beginning of a job (before any "real" text
processing is started) from a label file. In the case
of W ' , this label information is stored in .aux
files. We will soon discuss how this information was
written to the label file in the first place.

Such label files consist of calls to a macro
\NewLabel. This macro has three arguments: label

name, number of the entity and page number of the
entity. So in the above case one call contained in
this label file reads as follows:

\NewLabelCf -structure>C3.5)C67)

\NewLabel, when called, will in turn define two
macros, one called \REF-f -structure, which ex-
pands to the number of this figure, and one called
\PAGEREF-f -structure, which expands to the page
number. Here is the definition of \NewLabel.

\def\NewLabel #1#2#3C%
\expand& t er\def

\csname REF-#l\endcsname(#2>%
\expandafter\def

\csname PAGEREF-#l\endcsnameC#3)%

1

\Ref and \PageRef simply retrieve what \NewLabel
has stored:

\def \Ref #lC\csname REF-#l\endcsname)
\def \PageRef #I(%

\csname PAGEREF-#l\endcsname)

Note that a definition of \Ref or \PageRef would
normally be augmented by an \ i f x test along the
lines of the definition of \InputD to print a warning
message in the case of an undefined label.

Generating the Label File. From what we dis-

cussed so far you know that the label file is read in
at the very beginning of a TEX run. Therefore all

cross-references printed in the text are based on the
information of the previous run. They do not take
into account any changes occurring to those labels
due to changes in the text during the current run.
The same file name is used in the current run both
for reading the old label file and for writing new
label information in the new version of the label
file.

In the definition of \Label below it is assumed
that \TheFigureNumber produces the current figure
number. This macro has one parameter which is
the name of the label. \Labelstream is assumed to
be the stream for writing the label file.

\def\WriteLab{\write\LabelStream)

\def \Label #1C%
\edef\LabelTemp(%

\noexpand\string
\noexpand\NewLabel

(#l)C\TheFigureNumber>>
\expandafter\expandafter\expandafter

\WriteLab\expandafter(%
\LabelTempC\the\pageno>>%

>
Features Not Discussed. I only tried to sketch

here how cross-referencing macros can be imple-
mented. The above macros are far from complete.
The following details were ignored.

Opening and closing the label file. Reading in
the label file in the very beginning.
Printing a warning message if two figures are
accidentally labeled by the same label.
Using labels to label other entities like chapters,
sections, tables, etc.
Printing a warning message if label definitions
as generated during the current run d i e r from
label definitions of the previous run, resulting
in possibly wrong cross-references and requiring
processing a document for a second time.

Concluding Remarks

This article was derived from my book "QX in
Practice" (the original title was "Another Look at
w). The book will be published by Springer in
October of this year.

o Stephan v. Bechtolsheim
Integrated Computer Software, Inc.
2119 Old Oak Drive
West Lafayette, IN 47906
svb8cs.purdue.edu

