
TUGboat, Volume 10 (1989), No. 3

Software

The New Versions of T@C and METAFONT

Donald E. Knuth

For more than five years I held firm to my con-
viction that a stable system was far better than a
system that continues to evolve. But during the
TUG meeting at Stanford in August, 1989, I was
persuaded to make one last set of changes, in order
to bring T'EX and METAFONT to a state of com-
pletion consistent with their overall philosophy and
goals.

The main reason for the changes was the fact
that I had guessed wrong about 7-bit character sets
versus 8-bit character sets. I believed that standard
text input would continue indefinitely to be confined
to at most 128 characters, since I did not think
a keyboard with 256 different outputs would be
especially efficient. Needless to say, I was proved
wrong, especially by developments in Europe and
Asia. As soon as I realized that a text formatting
program with 7-bit input would rapidly begin to
seem as archaic as the 6-bit systems we once had,
I knew that a fundamental revision was necessary.

But the 7-bit assumption pervaded everything,
so I needed to take the programs apart and redo
them thoroughly in 8-bit style. This put m onto
the operating table and under the knife for the first
time since 1984, and I had a final opportunity to
include a few new features that had occurred to me
or been suggested by users since then.

The new extensions are entirely upward com-
patible with previous versions of TEX and META-
FONT (with a few small exceptions mentioned
below). This means that error-free inputs to the old
TEX and METAFONT will still be error-free inputs
to the new systems, and they will still produce the
same outputs.

However, anybody who dares to use the new
extensions will be unable to get the desired results
from old versions of TEX and METAFONT. I am
therefore asking the QX community to update all
copies of the old versions as soon as possible. Let
us root out and destroy the obsolete 7-bit systems,
even though we were able to do many fine things
with them.

In this note I'll discuss the changes, one by
one; then 1'11 describe the exceptions to upward
compatibility.

1. The character set

Up to 256 distinct characters are now allowed
in input files. The codes that were formerly
limited to the range 0 . . 127 are now in the range
0 . . 255. All characters are alike; you are free to
use any character for any purpose in 7&X, assigning
appropriate values to its \ca t code, \mathcode,
\lccode, \uccode, \sf code, and \delcode. Plain
T@ initializes these code values for characters
above 127 just as it initializes the codes for ordinary
punctuation characters like ' ! '.

There's a new convention for inputting an
arbitrary &bit character to TEX when you can't
necessarily type it: The four consecutive characters
--crp, where a and 0 are any of the "lowercase
hexadecimal digits" 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b,

c, d, e l or f , are treated by rn on input as if they
were a single character with specified code digits.
For example, --80 gives character code 128; the
entire character set is available from -^00 to ^ - f f .
The old convention discussed in Appendix C, under
which character 0 was '-Q, character 1 (control-A)
was ^-A , . . . , and character 127 was --?, still works
for the first 128 character codes, except that the
character following ^ ^ should not be a lowercase
hexadecimal digit when the immediately following
character is another such digit.

The existence of &bit characters has less effect
in METAFONT than in m , because METAFONT's
character classes are built in to each installation.
The normal set of 95 printing characters described
on page 51 of The METRFONTbook can be sup-
plemented by extended characters as discussed on
page 282, but this is rarely done because it leads to
problems of portability. METAFONT's char opera-
tor is now redefined to operate modulo 256 instead
of modulo 128.

2. Hyphenation tables

Up to 256 distinct sets of rules for hyphenation
are now allowed in m . There's a new integer
parameter called \language, whose current value
specifies the hyphenation convention in force. If

\language is negative or greater than 255, TEX
acts as if \language = 0.

When you list hyphenation exceptions with
w 1 s \hyphenat ion primitive, those exceptions
apply to the current language only. Similarly,
the \pa t te rns primitive tells T@ to remember
new hyphenation patterns for the current language;
this operation is allowed only in the special "ini-
tialization" program called INITEX. Hyphenation
exceptions can be added at any time, but new

326 TUGboat, Volume 10 (1989), No. 3

patterns cannot be added after a paragraph has
been typeset.

When TJ$ reads the text of a paragraph, it
automatically inserts "whatsit nodes" into the hor-
izontal list for that paragraph whenever a character
comes from a different \language than its prede-
cessor. In that way TFJ can tell what hyphenation
rules to use on each word of the paragraph even if
you switch frequently back and forth among many
different languages.

The special whatsit nodes are inserted auto-
matically in unrestricted horizontal mode (i.e., when
you are creating a paragraph, but not when you
are specifying the contents of an hbox). You can
insert a special whatsit yourself in restricted hori-
zontal mode by saying \language(number). This is
needed only if you are doing something tricky, like
unboxing some contribution to a paragraph.

3. Hyphenated fragment control

rn has new parameters \lefthyphenmin and
\righthyphenmin, which specify the smallest word
fragments that will appear at the beginning or end
of a word that has been hyphenated. Previously the
values \lefthyphenmin=2 and \righthyphenmin=3
were hard-wired into m and impossible to change.
Now plain EX format supplies the old values, which
are still recommended for most American publica-
tions; but you can get more hyphens by decreasing
these parameters, and you can get fewer hyphens by
increasing them. If the sum of \ le f thyphenmin and
\righthyphenmin is 63 or more, all hyphenation is
suppressed. (You can also suppress hyphenation by
using a font with \hyphenchar=-I, or by switching
to a \language that has no hyphenation patterns
or exceptions.)

4. Smarter ligatures -

Now here's the most radical change. Previous
versions of TEX had only one kind of ligature, in
which two characters like 'f' and 'i' were changed
into a single character like 'fi' when they appeared
consecutively. The new rn understands much
more complex constructions by which, for example,
we could change an 'i' following ' f ' to a dotless '1'

while the 'f' remains unchanged: 'fi'.
As before, you get ligatures only if they have

been provided in the font you are using. So
let's look at the new features of METAFONT by
which enhanced ligatures can be created. A META-
FONT programmer can specify a "ligature/kerning
program" for any character of the font being created.

position 12, the replacement of 'f' and '1' by 'fi' is
specified by including the statement

lli" =: 12

in the ligaturelkerning program for "f "; this is
METAFONT's present convention.

The new ligatures allow you to retain one or
both of the original characters while inserting a
new one. Instead of =: you can also write I =:

if you wish to retain the left character, or =: I if
you wish to retain the right character, or I =: I if
you want to keep them both. For example, if the
dotless 1 appears in font position 16, you can get
the behavior mentioned above by having

lli" I = : 16

in f's program.
There also are four additional operators

I = : > , = : I > , I=: I>, I=: I>>,

where each > tells TJ$ to shift its focus one position
to the right. For example, if f and i had been
replaced by f and dotless I as above, TJ$ would
begin again to execute f's ligature/kern program,
possibly inserting a kern before the dotless 1, or
possibly changing the f to an entirely different
character, etc. But if the instruction had been

I t ' I t
1 I=:> 16

instead, 'l&X would turn immediately to the liga-
ture/kern program for characters following charac-
ter 16 (the dotless 1); no further change would be
made between f and 1 even if the font had something
specified there.

5. Boundary ligatures

Every consecutive string of 'characters' read by
TJ$ in horizontal mode (after macro expansion)
can be called a 'word'. (Technically we consider a
'character' in this definition to be either a character
whose \catcode is a letter or otherchar, or a control
sequence that has been \ l e t equal to such a char-
acter, or a control sequence that has been defined
by \chardef , or the construction \char (number) .)
The new rn now imagines that there is an invisi-
ble "left boundary character" just before every such
word, and an invisible "right boundary character"
just after it. These boundary characters take effect
if the font designer has specified ligatures and/or
kerning between them and the adjacent letters.
Thus, the first or last character of a word can now
be made to change its shape automatically.

A ligature/kern program for the left boundary
character is specified within METAFONT by using

If, for example, the 'fi' combination appears in font

TUGboat, Volume 10 (1989), No. 3

the special label I I : in a ligtable command. A lig- 7. Better looking sloppiness
ature or kern with the right boundary character
is specified by assigning a value to the new inter-
nal METRFONT parameter boundarychar, and by
specifying a ligature or kern with respect to this
character. The boundarychar may or may not exist
as a real character in the font.

For example, suppose we want to change the
first letter of a word from 'F' to 'ff' if we are doing
some olde English. The METAFONT font designer
could then say

ligtable I I : "F" I : = 11

if character 11 is the 'ff'. The same ligtable
instruction should appear in the programs for char-
acters like (and ' and " and - that can precede
strings of letters; then 'Bassington-French1 will
yield 'Bassington-ffrench'.

If the 's' of our font is the pre-19th century s
that looks like a mutilated 'f', and if we have a
modern 's' in position 128, we can convert the
final s's as Ben Franklin did by introducing ligature
instructions such as

boundarychar :=255;
l i g t a b l e "s" : 255 =: 1 128,

=: I 128,
",I1 =: 1 128,
")" =: 1 128,
11 > I1 = : 1 128,

and so on. (A true oldstyle font would also have
ligatures for ss and si and sl and ssi and ssl and st;
it would be fun to create a Computer Modern
Oldstyle.)

The implicit left boundary character is omitted
by 7&X if you say \noboundary just before the
word; the implicit right boundary is omitted if you
say \noboundary just after it.

6. More compact ligatures. Two or more

ligtables can now share common code. To do this
in METAFONT, you say 'skipto (n)' at the end of
one ligtable command, then you say '(n)::' within
another. Such local labels can be reused; e.g., you
can say skipto 1 again after 1 : : has appeared, and
this skips to the next appearance of 1: :. There are
256 local labels, numbered 0 to 255. Restriction: At
most 128 ligature or kern commands can intervene
between a skipto and its matching label.

The TFM file format has been upwardly extended
to allow more than 32,500 ligaturelkern commands
per font. (Previously there was an effective limit of
256.)

There is now a better way to avoid overfull boxes, for
people who don't want to look at their documents to
fix unfeasible line breaks manually. Previously peo-
ple tried to do this by setting \tolerance=10000,
but the result was terrible because m would tend
to consolidate all the badness in one truly horrible
line. (m considers all badness 2 10000 to be
infinitely bad, and all these infinities are equal.)

The new feature is a dimension parameter
called \emergencystretch. If \emergencystretch
is positive and if TEX has been unable to typeset a
paragraph without exceeding the given tolerances,
another pass over the paragraph is made in which
l$,X pretends that additional stretchability equal to
\emergencystretch is present in every line. The
effect of this is to scale down all the badnesses
into a range where previously infinite cases become
finite; T)$ will find an optimum solution to the
scaled-down problem, and this will be about as
good as possible in a practical sense. (The extra
stretching is not really present; therefore underfull
boxes will be reported in warning messages unless
\hbadness is increased.)

8. Looking at badness

QX has a new internal integer parameter called
\badness that records the badness of the box it has
most recently constructed. If that box was overfull,
\badness will be 1000000; otherwise \badness will
be between 0 and 10000.

9. Looking at the line number

m also has a new internal integer parameter called
\inputlineno, which contains the number of the
line that l&X would show on an error message if an
error occurred now. (This parameter and \badness
are "read only" in the same way as \ las tpenal ty :
You can use them in the context of a (number),
e.g., by saying '\ifnum\inputlineno>\badness

. . . \f i1 or ' \ the\inputlinenol, but you cannot
set them to new values.)

10. Not looking at error context

There's a new integer parameter called
\errorcont ext l i nes that specifies the maximum
number of two-line pairs of context displayed with
m ' s error messages (in addition to the top and
bottom Lines, which always appear). Plain 'I$$ now
sets \errorcontextl ines=5, but higher level for-
mat packages might prefer \e r rorcontext l ines=l
or even \errorcontextlines=O. In the latter case,

328 TUGboat, Volume 10 (1989), No. 3

an error that previously involved three or more
pairs of context would now appear as follows:

! Error.
(somewhere) The \ top

l i n e
. . .
1.123 \The

bottom l i n e .
(If \errorcontextlines<O you wouldn't even see
the ' . . . ' here.)

11. Output recycling

One more new integer parameter completes the set.
If \holdinginserts>O when l)jX is putting the
current page into \box255 for the \output routine,
TEX will not move anything from insertion nodes
into the corresponding boxes; all insertion nodes
will stay in place. Designers of output routines
can use this when they want to put the contents of
box 255 back into the current page to be re-broken
(because they might want to change \vsize or
something) .

12. Exceptions to upward compatibility

The new features of rn and METAFONT imply
that a few things work differently than before.
I will try to list all such cases here (except when
the previous behavior was erroneous due to a bug
in l&X or METAFONT). I don't know of any cases
where users will actually be affected, because all of
these exceptions are pretty esoteric.

l$J used to convert the character strings
A-0, --I, . . . , --9, --a, --b, A-c, --d, --e, --f
into the respective single characters p, q, . . . , y,

!, 'I, #, $, %, &. It will no longer do this if
the following character is one of the characters
0123456789abcdef.

'QX used to insert no character at the end
of an input line if \endlinechar>l27. It will now

insert a character unless \endlinechar>255. (As
previously, \endlinechar<O suppresses the end-of-
line character. This character is normally 13 =
ASCII control-M = carriage return.)

Some diagnostic messages from used to
have the notation C"801 . . . ["FFI when referring to
characters 128.. .255 (for example when displaying
the contents of an overfull box involving fonts that
include such characters). The notation --80 . . .
--ff is now used instead.

The expressions char128 and char0 used to
be equivalent in METAFONT; now char is defined
modulo 256 instead. Hence char-I = char255, etc.

INITEX used to forget all previous hyphen-
ation patterns each time you specified \pat terns.
Now all hyphenation pattern specifications are
cumulative, and you are not permitted to use
\pa t te rns after a paragraph has been hyphenated
by INITEX.

0 'I)$ used to act a bit differently when
you tried to typeset missing characters of a font.
A missing character is now considered to be a word
boundary, so you will get slightly more diagnostic
output when \tracingcommands>O.

0 and METAFONT will report different
statistics at the end of a run because they now have
a different number of primitives.

0 Programs that use the string pool feature of
TANGLE will no longer run without changes, because
the new TANGLE starts numbering multicharacter
strings at 256 instead of 128.

INITEX programs must now set
\lefthyphenmin=2 and \righthyphenmin=3 in or-
der to reproduce their previous behavior.

o Donald E. Knuth
Department of Computer Science
Stanford University
Stanford, CA 94305

PubliC METAFONT Available

Editor's note: Klaus Thull announces that, as of
6 October, PubliC METAFONT is available. PubliC
METAFONT compiles with Turbo Pascal v.4 or 5 and
has passed the t r a p test. As with its companion,
PubliC l)jX (see TUGboat 10#1, pp. 15-22), this
program has virtual memory (and is also somewhat
slow).

Work is going on at sites other than Klaus'
for improving performance and video, as has been
the case with PubliC Tj$X. Distribution is now
being handled by DANTE, the German speaking
TEX users association. The changefile for version 0
of PubliC METAFONT is available at

Bitnet: 1is tservQdhdurzl

