
TUGboat, Volume 10 (1989), No. 3

Macros

TUGboat Authors ' Gu ide

Ron Whitney and Barbara Beeton

With this article we hope to fill a lacuna (some

might say %oidl') whose existence we have been

attributing to the usual factors: tight schedules,
alternative priorities and warty QX code. We now

feel the macros in use for TUGboat have stabilized

t o the extent that documentation and suggestions

for authors will remain fairly constant, and we

hope this article can serve as a reasonable guide to

preparation of manuscripts for TUGboat. Authors
who have used the TUGboat macros before will

note several changes (including more modern names
for the style files). Suggestions and comments are
quite welcome at the addresses listed below.

TUGboat was originally typeset with a package
based only on p la in . Later, as demand for style
files follows wherever U ' - d e v o t e e s wander, a

TUGboat variant of the U r n a r t i c l e style was

also created. The two macro sets yield much the

same output, differing in certain ways for input.

Below we make comment on various aspects of

the TUGboat package, first for the plain-based
macros, then for U ' . The macro sets share the

file tugboat . corn, and users of either style should

read the section entitled "Common Abbreviations

and Utilities". We conclude with some general

suggestions to help make the lives of those on the

receiving end of (any kind of) electronic copy a
little easier.

The plain-based macros: tugboat . s t y

The macros are contained in two files, tugboat . s t y

and tugboat . corn.

Gene ra l descr ipt ion of tags. We attempt wher-
ever possible to tag the various elements of TUG-

boat articles in a "generic" way, modified in some

respects by convenience. Authors and editors, of

course, need tools to shape their articles to the form

they desire, but we also wish to encourage a tagging

style which is appropriate for electronic interchange.

I t seems unfair to expect much thought from au-

thors concerning the markup of their information

if we only provide a bag of widgets and do-hickies

to hack and pound an article together. The tags

whose use we encourage are the higher-level tags

that mark the logical document structure. Below

these are formatting macros that we recognize may
be essential for certain applications. Both sorts of
tags are described in the following article.

Generally, to L'mark up" the data (foo), a tag
\xxx will precede (foo) and \endxxx will follow

(thus: \xxx (foo)\endxxx). We use the 1. . .3
form to delimit arguments of lower-level formatting

macros. Optional commands follow tags and are
enclosed in [. . . I , & la U r n . Several options

may be enclosed within one set of square brackets,

or each option may be enclosed in its own set of

brackets. These "options" are actually just QX

commands, and it is always possible to insert raw
QX code as an option. Such practice violates

truly generic markup, but it is helpful and at least
confines The Raw and Dirty to a smaller area.

Perhaps a little more detail is of use to some
readers here. Upon encountering a tag, the general
operational scheme of the macros is as follows:

(read t a g)

\begingroup

(s e t defaults)

\the\every ...
(read optzons)

(branch t o approprzate actzon,

using LLargument" a s necessary)

(c leanup)

\endgroup

The scheme shows that code inserted as an option
is localized and that it may be used to override
certain defaults and to guide branching. Things are
not always simple, however. Sometimes parameters
are set after a branch is taken (e.g. the macros
might only call \raggedright after determining
whether the mode is "\inlinen or "\displayn),
and, despite localization, parameter setting might
affect the current paragraph if a branch has yet to
be taken. This is n o t to say the macros don't work,
but rather that those authors who venture beyond
the documented regions of the macros should do so
with their eyes open.

For convenience, we also allow the * as a

delimiter for the higher-level tags; thus we could

use either

\ t i t l e \TUB\ Authors' Guide \ e n d t i t l e

\ t i t l e * \TUB\ Authors' Guide *
to indicate the title of this paper. To typeset a

* within text delimited by *, the p l a in control
sequence \ a s t has been extended to give * in text

and the usual * in math.

This markup scheme may suffer at the hands
of W ' s parsing mechanism when tagged data is

TUGboat, Volume 10 (1989), No. 3 379

nested. In these cases, one may group (1. . .I)
embedded data so that knows to proceed to
the next \end. . . or *.

In the cases where we show extra spaces and
carriage returns around arguments in this article,
those (discretionary) spaces are accommodated in
the macros. Thus, for example, when the argument
to \ t i t l e above is typeset, \ignorespaces and
\unskip surround it and the extra spaces have no
untoward effect. Spaces are also gobbled between
options.

Outer form. At the outermost level, a source file
will have the form (using the * . . . * delimiters):

(perhaps additional macros for article)

\ t i t l e * (title) *
\author * (author) *
\address * (address) *
\netaddress * (network address) *

(body of article)

Data preceding \ a r t i c l e is saved and typeset
when \ a r t i c l e is encountered. Each author should
have his/her own

block, and the macros will do their best to combine
the information properly in the appropriate places.
Explicit linebreaks can be achieved within any of
these items via \\. Title and authors are, of course,
set at the beginning of an article; the address
information is listed separately in a "signature"
near the end of an article, and is present for the
convenience of those who might photocopy excerpts
from an issue of TUGboat. \makesignature does
the typesetting work. Generally authors are listed
separately in the signature. In cases where authors
and addresses are to be combined, one may use
\s ignature(. . . I and \signaturemark with some
or all of

\ theauthor ((author number))
i theaddress {(author number)}
\thenetaddress {(author number)}

to get the desired result. For example, for an article
with

\author * Ray Goucher *
\address * \TUG *
\netaddress *TUGQMath.AMS.com*

\author * Karen Butler *
\address * \TUG *
\netaddress *TUG@Math.AMS.com*

we could say

\signature C
\s ignaturemark
\theauthor1 and \theauthor2\\
\ theaddressl\\
\thenetaddress13

to obtain the signature

o Ray Goucher and Karen Butler
Users Group

TUG@Math.AHS.com

Use of at least \thenetaddress is recommended for
this just so that the network address gets formatted
properly. The optional command [\network{. . .>I
will introduce the network address with a network
name, so

produces

Internet: TUGboat @Math. AMS . corn

\endar t ic le marks the end of input and is
defined as \vf i l \ end for most uses. We redefine
it as \endinput to assemble streams of articles in
TUGboat.

Section Heads. Heads of sections, subsections,
etc. are introduced with \head, \subhead, etc.,
respectively. The underlying macros all use \head,
so \endhead is the long-form ending for all these
tags. For example, the first two heads of this article
could have been keyed as

\head The \plain-based macros:
{\tt tugboat. s ty) \endhead

and

\subhead General descr ip t ion of
t ags \endhead

In TUGboat style, the paragraph following a
first-level head is not indented. This is achieved
by a look-ahead mechanism which gobbles \pars
and calls \noindent. Actually all of the \ . . .head
tags gobble pars and spaces after their occurrence.
This allows one to enter a blank line in the source

380 TUGboat, Volume 10 (1989), No. 3

file between head and text, such practice being a
visual aid to your friendly TUGboat editors (if not
to you). Be careful of that \noindent after a first-
level head: you will be in horizontal mode after the
\head * . . . *, so spaces which appear innocuous,
may not be so.

Lists. Lists are everywhere, of course, and a sim-
ple list hierarchy can transform a one-dimensional
typesetting problem into something nasty. All of
which is to say, we are certainly not done with this
area of tagging, but here are the available macros.

Not surprisingly, \ l is t marks the beginning of
a list. A list can be itemized, wherein each item is
tagged with \item, or unitemized wherein items are
delimited by --M (the end of your input line). The
itemized style is the default and [\unitemized1
will get the other. Tags for the items default to the
\ bu l l e t (= o), but can be changed by feeding an
argument to \tag{. . .). The [\tag{. . .)I option
used with \ l is t assigns the tag for each item of
the entire list, while [\tag{. . .)I used with \ i tem
changes only the tag for that item. The obvious
dynamical tags are available with options

\numbered
\romannumeraled
\ l e t t e r e d (lowercase)
\Lettered (uppercase)

Lists can be set in several columns by setting
\cols=. . . . The columns are aligned on their top
baselines and the user must break the columns with
\colsep. Thus,

\ l is t [\uni t emized\numbered] [\cols=2]
Fourscore
and seven
years ago
our f a t h e r s
\colsep
brought f o r t h
on t h i s
continent
\ end l i s t

yields

1. Fourscore 5. brought forth

2. and seven 6. on this

3. years ago 7. continent

4. our fathers

\ eve ry l i s t is a token register which is scanned
at the beginning of each list after the default
parameters are set and before options are read. If
you want all your lists numbered, for example, you
might insert

at the top of your file rather than giving an option
to each list.

Implementation of sublists is under construc-
tion.

Verbatim Modes. There are several variations on
this theme. In each case, text is printed in a
typewriter font and (almost) all input characters
produce the glyph in the font position of their
character-code (i.e. you get what you type, no
escaping it). In addition to the long form

the I character can be used to enter and leave ver-
batim mode, acting as a toggle much as the $ does
with math. 1 . . . 1 produces inline verbatim text,
while I I . . . I 1 displays its output. \verbatim itself
defaults to display form, but \verbatim[\inlinel
and its contraction \verbinl ine (both terminated
by \endverbatim) produce the inline form. ^^M

yields a space inline, and a new paragraph in dis-

play. Generally, for snippets of text we use the
I . . . I form, and for longer items the

\endverbat i m

form (although I I . . . I I is a good way to display a
single line of code).

In addition to formatting text between \ver-
bat i m and \endverbat im, \verbatim may read and
write data from and to files. We find this variant
useful in (almost) guaranteeing consonance between
macros in use and their published listings.

\verbatim[\inputf romf ileCf 00. inp)]

\endverbat i m

will incorporate the contents of file f 00. inp in
the listing before the text between \verbatim and
\endverbat im. The shortened form

\verbfile{foo.inp)\endverbatim

accomplishes the above in the case that the text is
empty. While the code around the data, f oo . inp,
above looks excessively long, do remember the
implementation uses the basic \verbatim macro, so
options can also be read after the filename. For
example,

\verbf ileCf 00. inp) [\numbered]
\endverbat i m

would number the lines of the listing.

TUGboat, Volume 10 (1989), No. 3

We often rearrange code supplied to us so that
it fits in the narrow measure of TUGboat's two-

column format, and we sometimes make corrections

to macro sets (you thought you were perfect!). Since

errors can (and do - we aren't perfect either) creep
in with these modifications, we use the above tech-

nique to maintain consistency between the listing

published in TUGboat and the underlying macros

used for examples.

To write out information, use

An added bonus here is that characters which get
internalized as moribund "letters" or "others" in the

process of listing them, can return revitalized for

perhaps their real use when written out to another
file and read in again. The example above involving

Ray and Karen was coded as

. . . to get the desired result. For

example, for an article with

\verbat imC\outputtof ile{ray . vbm)]
\author * Ray Goucher *

\endverbat im

we could say

\verbatimC\outputtofileIsig.vbm~l

\signature {

\signaturemark

\theauthor1 and \theauthor2\\

\theaddressl\\

\thenetaddress13

\endverbat im

to obtain the signature

\begingroup

\authornumber=O

\input ray.vbm

\input sig.vbm

\makesignature

\endgroup

This is perhaps not the most edifying example,

but you get the gist. (We localize the process of
storing and retrieving these authors and addresses

so as not to clobber our own.) We would encourage

our authors to use these mechanisms for connecting
verbatim text to external files for the sake of

maintaining consistency between active code and

its documentation.

\verbatim scans to \endverbatim (a 12-token

sequence since the \ is of type 'other' after \ver-

batim gets going). Only this sequence of characters

will interrupt the scan. On the other hand, 1
and I I scan to the next I and I I , respectively.

Needless to say, one should use forms of \verbatim

to set text which contains I (and I or I I to set
text containing \endverbatim if you are writing an

article like this one). Both the I and \verbatim
tags scan ahead for the usual I: to check for options.

In those rare cases when the C is really supposed to

be the first character of the verbatim text, use the

option [\lastoption] to stop option parsing. For

example, to show

we keyed

There are situations where one wants to typeset

most things verbatim, but "escape" to format
something exceptional. For example, the insertions

of metacode given in the listings above require some

access to the italic font. & giving
[\makeescape\ !I to \verbatim, the !

escape character in that block. Thus,

\verbatim[\makeescape\ !I

the option
is made an

really calls the italic font in the middle of the

listing (one might also want to use \makebgroup

and \makeegroup in the options to define characters
to localize this call; see p. 384). Situations will
dictate preferences for what character may be used

as an escape (we use the I , !, and / in this article).

There is also a means of changing the setup of
every occurrence of verbatim mode. The contents

of token register \everyverbatim is scanned after
the defaults of verbatim mode have been set. In
this article, for example, we have made < active

and defined it in such a way that <. . . > typesets as

metacode. Since \verbatim ordinarily changes < to

type 'other' on startup, we key

at the beginning of the file to have the proper

adjustment made whenever verbatim is started.

When "escaping" within a verbatim block, one

should be aware that spaces and carriages returns
are active and hence not gobbled as usual. Using
the ! as the active character, one might key

TUGboat, Volume 10 (1989), No. 3

to get an extra half line of space in the middle of

the listing. The space and carriage return on this

line, however, cause problems. The space expands

to \ifvrnode\indent\fi\space and 7&X will not

like the \ indent after \vskip. The - ^ M expands to

\leavevmode\endgraf , and therefore puts an extra

line into the listing. The solutions, in this case,

are to drop the space and to use ! ignoreendl ine

(which just gobbles the ^-M), but one should be

aware, generally, that some thought may be required

in these situations.

The option [\numberedl causes the lines of a

verbatim listing to be numbered, while [\ruled1

places rules around the whole thing:

1. (code)

2. (m o r e code)

3. (y e t more code)

4. . . .
The option [\continuenumbers1 picks up the num-

bering where it last left off.

5 . (m o r e)

6. (a n d m o r e)

7. . . .
The code underlying \verbatim in display style

implements each line as a paragraph and places

math-display-size whitespace above and below the

verbatim section. Page and column breaks are

permitted within these listings. To prohibit breaks

a t specific points or globally, one must insert

penalties or redefine --M to insert \nobreak in the

vertical list at the end of each "paragraph" (i.e.

line). We should also note that the bottom of such a

verbatim listing is implemented so that ensuing text

may or may not start a new paragraph depending

on whether a n intervening blank line (or \par) is or

is not present.

Figures and Page Layout. Figures are keyed as

\ f i g u r e

(vert ical mode mater ia l)

These are generally implemented as single-column

floating topinsertions, but the options [\mid] and

C\botl can change specific items to be mid- or

bottom-insertions, respectively. Here we recom-

mend that the long-form terminator be used (n o t

the *. . . * form). One can think of the information

"passed" as being "long" in the sense of possi-

bly containing paragraphs, this being a mnemonic

device only. The primary reason for the recommen-

dation is that one is (in some sense, maybe) more

likely to encounter a rogue * in longer text than in

shorter text and hence more likely to encounter a

surprising result due to a macro stopping short at

the wrong *.
Perhaps here is a natural place to mention also

that these macros sometimes read their arguments
and then act, and sometimes act on the fly, not
actually storing an argument as a string of tokens at
all. \ t i t l e , for example, is in the former category,
while \figure is in the latter. Reasons may vary for
the choice in methods. Storing a string of tokens
as an argument does not allow re-interpretation
of the category codes of the underlying character
string. Thus, storing the "argument" of \figure

all at once might misinterpret some characters
which should appear as verbatim text. For this
reason we set figures as we go and just close off the
box with \endfigure. On the other hand, using
information in multiple situations (e.g. titles and
running heads) requires storing the information as
a token string, not as a typeset list.

When text delimited by *. . .* is read as
an argument, the *s are dropped by the parsing
process. When the text is handled on the fly, the
first * is gobbled and the second is made active
to perform whatever action is necessary at the
close of the macro. When possible, we prefer to
operate on the fly since nested tags are handled
properly in that case and no memory is consumed
to store arguments. Examination of tugboat. sty

will show which case applies in a given situation,
but this general knowledge may help when trying
to debug those situations in which an unexpected
* has disrupted things.

A primitive \caption{. . .) option is available

to \u lap (i.e. lap upward) its argument into the

figure space, but formatting of the caption is left to

the user. For example, the code:

\ f i g u r e [\top1

[\captionC\centerlineCOdd Fig ." l)) l

\vbox t o 5 p c O

\endf i g u r e

produces the figure at the top of this column or the

next.

Figures spanning columns at the top and bot-

tom of a page are currently supported only on the

first page of an article, but we expect they will

soon be allowed on any page (a general rewrite of

TUGboat, Volume 10 (1989), No. 3

\caption(. . .)
\twocolf igure

and, of course, I and I I .

Odd Fig. 1

the output routine is in progress). \twocolf igure
(terminated by \endf igure) starts up such a figure
and currently m u s t occur before any material has
been typeset on the first page (i.e. before \article).

Macros \onecol, \twocol, and \threecol

provide one-, two-, and three-column layouts, but
these cannot currently be intermixed on a page. We
hope to provide automatic column-balancing and
convenient switching between one- and two-column
format within a year. \newpage in each format is
defined to fill and eject enough columns to get to
the next page. \newcol is just \par\vf ill\eject.

Command List Summary. Tags are listed in the
order discussed. Options are listed under tags.

\title

\author

\address

\netaddress

\network

\signature

\article

\makesignat ure

\endart icle

\head

\subhead

\subsubhead

\list

\numbered

\romannumeraled

\lettered

\Lettered

\ruled

\tag<. . . I
\item

\tag<. . .3
\everylist

\verbatim

\numbered

\ruled

\inputfromfile(.

\outputtofile{..

\verbinline

\verbf ile

\figure

\mid

\bot

The I4w macros: ltugboat . sty

1tugboat.sty is the primary macro file, tug-

boat .com a collection of items common to both
I4m and plain input. Articles will have the form:

\documentstyle[ltugboat]{article)

(perhaps additional macros for article)

\begin(document)

\maket itle

(body of article)

\makesignature

\end(document)

This is the usual form for I4m documents, of
course, except that now each author will have
his/her own

\author(. . .)
\address(. . . 3
\netaddress(...I

block. As with the plain style, the author and
address macros will store their information for
later display. See the discussion of \address,

\netaddress and \makesignature on page 379
to understand more. Linebreaks within \title,
\author, and \ . . . address are specified with \\.

We refer the user to the I P ' manual for
description of section heads, verbatim mode, inser-
tions, and movement between one- and two-column
format. The style of printed output has, of course,
been somewhat modified to fit TUGboat style.
ltugboat .sty might be of some use to others wish-
ing to modify the article option in this direction.

Common Abbreviations and Utilities

Definitions of a number of commonly used abbre-
viations such as \MF and \BibTeX are contained in
tugboat. com. Please use these whenever possible
rather than creating your own. We will add to the
list as necessary.

384 TUGboat, Volume 10 (1989), No. 3

Several other constructions that we have found

useful for both plain- and WT)$-style input

have been incorporated in tugboat. com. Vari-

ous *laps (\ulap, \dlap, \xlap, \ylap, \=lap)

and *smashes provide means of setting type which

"laps" into neighboring regions. \dash and \Dash

are en- and em-dashes that break properly. \ s lash

is a breakable slash. The macro

\makestrut [(ascender d i m e n) ;

(descender d i m e n)]

allows ad hoc construction of struts.

\makeatletter \catcodes the Q for internal

control-sequences. There are also more general

functions

\makeescape

\makebgroup

\makeegroup
\makeletter

\makeother

\makeact ive

that change the category of a given character into
the type mentioned at the end of the macro name.

For example, \makeact ive\ ! changes the category

of the ! to 13. We have given many other examples
of these in this article. Readers may look at the
end of tugboat. com after the \endinput statement

to see further documentation on the contents of the

file.

Issue Makeup. Constructing an entire issue of

TUGboat requires use of a few features that authors

may notice when articles are returned for proofing.
\xref to allows for symbolic cross-referencing, but

is enabled only late in the production process.

The distribution version of tugboat. com defines
\xref to so that "???" is typeset whenever it is

called. Not to worry.

We also put notes into the file since there are

many things to remember, and these appear as
\TBremarkC. . . I . Authors can look for such things,
if they are interested.

General Coding Suggestions

Probably 90% of the code we receive is easily

handled, and for this we are most appreciative.

We do have suggestions of a general nature that

authors should keep in mind as they create articles
for transmission here or anywhere else.

Those who create code find it much easier to

read and understand their own code than do others

who read the "finished" product. In fact, some
people seem to forget that the electronic file will

be viewed (in fact, studied) in addition to the

printed copy. Documentation and uniform habits
of presentation always help. Blank lines are easier

to digest by eye than \pars. Tables and display

math can often be keyed in such a way that rows

and columns are clear in the source file on a display

screen as well as in print. Explanations or warnings

of tricky code can be very helpful. Authors should
place font and macro definitions in one location at

the beginning of an article whenever possible.

Authors should anticipate that articles will un-

dergo some transformation, and that positioning of

some elements may change simply because articles
are r u n together in TUGboat. Decisions on line-

breaks, pagebreaks, figure and table placement are

generally made after the text is deemed correct.
We avoid inserting "hard" line- and page-breaks
whenever possible, and will not do so, in any case,

until the last minute. We also use floating insertions

for figure and table placement when we first receive
an article. It is easier for us to work with a clean
file containing some bad breaks, overfull boxes or

other unsightliness, than it is to handle a document

containing ad hoc code dedicated to a beauteous
(albeit narrowly specific) result.

When authors proof their articles in formats

other than that of TUGboat (for example), they

should expect that TUGboat's changes in pagewidth
and pagedepth may drastically alter text lay-
out. Paragraphs are rebroken automatically when

\hsize and \vsize change, but \center l ine does

not break, and we often see tables and math displays

which are rigidly laid out. When possible, authors

might use paragraphing techniques instead of calls

to, say, \center l ine (Beeton will be writing up

her lectures on paragraphing techniques for a future

issue of TUGboat), and they should try to code
tables in such a way that widths of columns can be
changed easily. Generally, authors should attempt

to anticipate the work that might be necessary if
requests for other reasonable formats of their texts

are made. In the case of TUGboat, we make

a strong effort to stuff macro listings and tables
into the two-column format. Since these types of

items are not generally susceptible to automatic

line-breaking, we give thanks to s td ings made by
authors ahead of time. In this context, we recom-

mend the use of \verbfile{. . .) (see p. 380) to

maintain consistency between documentation and

reality.
Specifically in the domain of lQX macros, we

find that many authors throw in unnecessary %
characters to end code lines. Except in cases where

the ^^M means something other than end-of-line,

TUGboat, Volume 10 (1989), No. 3 385

linebreaks can reliably be placed after control-

words and numerical assignments. We have seen

m ' s buffer size exceeded when % was placed after Round boxes for p la in TkX
every line.

A wider perspective in the matter of naming

macros can prevent problems that occur when defi- Garry Glendown

nitions are overwritten as articles are run together.
The names of control sequences used in p la in ,

IP'QX, and AMS-TEX are documented and authors

should avoid using them for other purposes. It is
also wise to avoid commonly used names such as

\temp, \ r e su l t , \I, and \mac in presenting code
that might be cribbed by other users. The fre-
quently used technique of temporarily \catcodeing

a character to be a letter (e.g. the Q) provides a

good method of hiding control sequences so that

Doing presentation sheets, I stumbled over a small

thing I had been missing for quite a while: boxes.
Well, normal boxes are boring, so I thought about
doing boxes with round corners.

To do that, I took a look at the circle fonts

used for the I P m pictures. They would work out

fine. But, despite of all my 'QX knowledge and
the information from The =book, it didn't work.

Either the boxes would look like this:

they will not be clobbered later. Readers are in

need of small macros to do little tricks, and they f -
often try suggestions brought forth in TUGboat. A
little extra effort in making these macros consistent or like this:

with the macros in wide distribution and in making

them robust will be much appreciated.

Electronic Documentation and Submission

Procedure

In addition to tugboat. s ty , l tugboat . s ty , and

tugboat . corn, a copy of this article, tubguide. tex ,
will be available at most m archives, including

those at Clarkson and Aston.
Please address all electronic correspondence to

the TUGboat maildrop:

Mail to either of our personal addresses is liable

to go unseen if vacation or illness intervenes. We

also request that you supply an abstract of any

expository article. This will be used as the basis

for translation of abstracts to languages other than

that in which the article is published.

o Ron Whitney
'lJ$ Users Group
P. 0. Box 9506
Providence, RI 02940-9506
TUGboatQMath.AMS.com

o Barbara Beeton
American Mathematical Society
P. 0. Box 6248
Providence, RI 02940-6248
TUGboatQMath.AMS.com

or some other, not very encouraging, way. After

some hours (I think it was about 2112 or so) I finally
solved the problem as found in the listing below.

The problem is the strange (at least for normal

usage) way the circle font has the width and
reference point set. The width is exactly twice as

big as the quarter circle, and the reference point of
the right two quarters is far beyond the character.

So, in order to get the right positioning of the
characters, the boxes have to be much wider in the
inside than they are on the outside.

Using RBox. To use the RBox-Macro, there are two
simple forms: \roundBox and \RoundBox. Both get

two parameters: the size of the box as a percent of

\hsize, and the text. When calling \roundBox, you
will get a box with a border .4pt thick; \RoundBox

will result in one with a .8pt border.

If you type

\hbox(%
\roundBox(.4)(This is)%

\RoundBox(.43Ca Test)%

>
it will result in:

(7) (-1
In addition to these to 'interface'-macros, you

may use the internal function called \RBox. The

syntax is the following:

