
Design of Oriental Characters with METAFONT

Platt Campus Center
Harvey Mudd College

Claremont, CA 91711
dhosek(0yrni.r

dhosek(0jarthur.claremont.edu

ABSTRACT

The goals of a meta-font can perhaps be best realized in the design of Oriental char-

acters. These characters, unlike Western alphabets, are composed of a finite number of

identifiable components. For example, the Kanji characters used by Japanese are each

composed of a number of radicals which are then composed of a set of strokes. Variations
in the size and appearance of these elements have a certain degree of regularity to them.

The Quixote Oriental Fonts Project (Q0FP) l has two goals: the first is to simplify

the creation of the large number of characters required by languages such as Chinese

and Japanese by making the top-level description of the characters as simple as possible.

Ideally the program for a single Kanji character would be composed entirely of names of
radicals and mnemonic names for their placement. No coordinates would appear at all.

The second goal is to pave the way for the creation of new families of Oriental typefaces
by reducing the required work to that of re-designing the component strokes of a character
(and possibly making minor changes to the programs for radicals) rather than requiring

the designer to modify thousands of individual character programs.

1. Introduction
Before considering the details of QOFP, it is worthwhile to consider the question of why an American
with little or no knowledge of a n y Oriental language would take on a project as large as that entailed

in the design of character sets for Chinese, Japanese, and Korean (there are a total of nearly twenty

thousand characters involved in this endeavor).

The main reason relates to my interest in the philosophy of METAFONT. In Icnuth (1982), the

sentiment is expressed that ultimately we might hope to find the "essence" of a letter such as A and
be able t o express all possible typefaces by changing the values of various parameters. However, the

long evolution of Western letterforms makes this a difficult process.2 It seemed to me, however, that

the appearance of the Kanji characters used in Oriental typefaces was ideal for implementation in

METAFONT. One almost wonders if the originators of the Oriental characters foresaw the creation of
a system such as METRFOM.

While it is difficult to define the "essence" of the letter "A", this is not so big a problem with the
typical Kanji character. Each character is not defined so much by its total appearance as it is defined

by the combined appearance of the strokes that comprise it.

My earliest efforts to create a Kanji font were frightfully bad.3 For one thing, my lack of knowledge

of Chinese or Japanese caused me to make many invalid simplifications of certain characters and to

introduce unnecessary complications. After showing some of the early samples to some friends studying
Japanese, I received many helpful suggestions. One of these was to define characters in terms of their

'The reason for choosing this name should be apparent to anyone who thinks about it.
2Modern Western typefaces have a variety of influences in their form stemming from the different manners in which

they have been produced over the centuries.

3They are now hidden away in i?rchival storage and I refuse to show them to anyone.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 499

radicals rather than their strokes. This has two main advantages: first, it dramatically simplifies the

character programs and second, it makes it far easier to correct my mistakes as I go along.

2. The Plan of Attack
Rather than rush into the character design on my second try, I spent more time on developing support
code for the characters and came up with what might best be described as an "object-oriented meta-
font." The main principle behind this technique is to reduce the amount of information any particular
portion of the code needs to "know" about the remainder of the system. For example, a typical

character program might look like the following:

beginjchar(">", l*=la)(l'>'l, la)(UNDEFINED);

tn'plet(1, 2, 3, 4, 5, 6);

nichi(1, 2);

nichi(3,4);
nichi(5, 6);

endjchar;

In this character program, not a single explicit coordinate is specified. For that matter, there is not

even any need for the program to be aware of the shapes of the radicals used either. The program
for is identical to E with the sole exception that nichi is replaced with kuchi. Note also that the

dimensions of the character itself are not given, but rather are specified elsewhere.
These two items are one of the primary things setting off QOFP from the work done by Guoan

and Hobby in the old METQFONT (see Guoan and Hobby 1984). While they also took the approach of
calling subroutines to put strokes and radicals together into characters, they additionally specified all

dimensions of the character and internal coordinates explicitly, in this manner limiting the possibilities

of the meta-ness of their font.4

2.1 How M e t a - is m y Font?

In keeping with my philosophy of object-oriented METRFONT, I decided to determine parameters for
the font in a manner similar to that described by John Sauter (1986) for the Computer Modern fonts.

A top-level input file would contain only the bare minimum specifications that define that typeface:

if unknown qjbase: i n p u t qjbase fi % Make sure qjbase is present.

font-identifier := "CJKJM"; font-size 10pl#;
font-coding-scheme "JIS";

driverfile "qkan j i" ;

i n p u t bbqkjm % Generate QKJM at 10pt.

Through some fortunate coincidences, the syntax of the opening file has developed some pleasant
regularity. Any declaration in which := appears is of no importance in the generation of the font while
the remainder of the declarations are used in producing the font.

Numerous behind-the-scenes macros are used in QOFP to convert information from the human-
readable format in which it is input into something that will be more useful for the system. For

example, the b e g i n j c h a r macro examines the value given by font-codingscheme to determine

which pair of character codes given (if any) should be used in determining the final code used. The
use of these codes is not simply confined to a basic mapping of the two-byte code to METAFONT

charcode and charext: for example, if the font-coding-scheme is set to "jTeX JIS", the code will

be automatically re-mapped into the subfont divisions used in J'Q$ (see Saito 1987). This partially

explains the use of default-coding-scheme in the above example. Since qkjmlO divided into subfonts

is still qkjml0, i t makes sense to re-use that part of the code with the following file used as a top-level
input file:

4They are to be forgiven for this, however, since they were among the f r s t pioneers of METRFONT. Knuth does

similar things with his character programs in Computer Modem (1986); for example, it is not possible, without changing
the character program itself, to create a Century Schoolbook version of the iE ligature from the CM description of it due

to the hard-coding of such things as the height of the crossbar of the "En.

500 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

font-coding-scheme " j TeX JIS";

choose-subfont 8;

input qkjmlO

which will generate the subfont indicated by \ja in Saito's JT@. Note that font-codingscheme
was modified to not change the coding scheme if one is already in affect (which makes this particular
application practicable).

By organizing the top-level input files in this fashion, i t should be a fairly simple procedure to
generate any font in a given family with minimal effort.

One thing worth noting is the use of "design-sized" fonts in this system. In a letter from Edgar
Cooke, I was informed that at present, this practice does not occur in Japanese typography. This
is doubtless due to the monumental effort that would be required to do such a task. However, just

because this is not a current practice doesn't mean that it shouldn't be done. Only experience will tell

whether the ability to have an Oriental font tailored t o a specific typesize will indicate whether such
a practice is worthwhile.

2.2 Choosing Radical P lacements

Perhaps the most revolutionary aspect of QOFP is the fact that no coordinates are specified explicitly
in the character program. Instead, as demonstrated above, symbolic names are given for the placement
of the radicals in the characters. A cursory examination of any Oriental code table will indicate that
radicals come together to form characters in a relatively small number of positional combinations.
By exploiting this, characters can be easily generated. At present, I am still experimenting with the

potentials of this technique, so I am unable to include any examples of the lowest level code i n ~ o l v e d . ~

The big obstacles in this approach are designing radical programs to be general enough to fit together

in the different placement combinations, and prudently choosing the coordinates to be generated for
the different placement codes.

Korean

The Hangul alphabet of Korean is of particular interest in this project since Hangul characters are
subject to the same sort of regular placement rules as Kanji are, but to an even greater extent. It may
be possible to even simplify Hangul character programs to the point where all that needs be specified
for any character is the letters which compose it (assuming that the organization of Hangul characters
in the Korean character set is reasonably algorithmic). I hope to have some samples of this available
for display at the conference in August.

3. Plans for the Future
Ultimately, QOFP will result in at least three, possibly more, families of typefaces for the Japanese,

Chinese, and Korean national character sets. Once the basic routines are working reliably, creation of a

single character can be accomplished in five minutes or less (depending on how familiar the individual

inputting the character definition is with the names and use of the METRFONT macros involved). Even
after the project is completed, this will be a useful feature since the assorted national character sets

omit many thousands of uncommon Kanji from their coding which could possibly be necessary for

certain documents. Ideally, the code will be distributed freely, but economic circumstances may make
this impractical.

5 A printed copy of all METRFONT code written to date will be available for perusal a t the conference.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 501

Appendix: Oriental '-I'E;)Z

QOFP is currently not concerned with the problems of special versions of 'I)$ for Oriental processing

or with solving the Kanji input problem. However, I have collected a few thoughts on the problem of
creating a suitable Oriental processor and a corresponding environment for d v i output:

A "big" T@ implementation which uses 64-bit words rather than 32-bit words could be used for
Oriental processing (the main memory array does not necessarily need to be increased to greater

than 64,000 words if this would cause problems in a low-memory environment). If the word size
is 64 bits, then the size of a quarterword would then be 16 bits, which would allow for character

codes adequately large enough for two-byte character sets.

A d v i driver for an Oriental language which uses non-printer-resident fonts should only download
the characters in the font actually used. It's a good idea to remember (for all d v i drivers, actually)
that the character codes used by do not necessarily need to correspond to those used in the

printer. For example, the fact that TEX accesses some character at character code 255 does not

mean that that character must be accessed a s character 255 when it is used on the printer (this

is especially important for those output devices which have a limit on the size of a character set
less than 256).

Bibliography

Fenn, C.H. The Five Thousand Dictionary. Cambridge, Mass.: Harvard University Press, 1955.

Guoan, Gu and John Hobby. " A Chinese Meta-Font." TUGboat 5:119-136, 1984.

Knuth, Donald E. "The Concept of a Meta-Font." Visible Language 16:3-27, 1982.

Knuth, Donald E. Computer Modern Typefaces. Reading, Mass.: Addison-Wesley, 1986.

Rose-Innes, Arthur. Beginners' Dictionary of Chinese-Japanese Charac-ters. New York: Dover Books,

1977.

Saito, Yasuki. "Report on m: A Japanese w." TUGboat 8:103-116, 1987.

Sauter, John. "Building Computer Modern Fonts." TUGboat 7:151-152, 1986.

Tobin, Georgia K.M. "Designing for Low-Res Devices." TUGboat 9:126-128, 1988.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

