
change tasks. The solution to this awkward method was to transfer the entire procedure to within the

editor. Hence the editing environment, used the most in the production of a 'I)$ document, becomes

the environment that controls the entire process.

Once the basic sequence of producing, previewing, and printing a document was simplified to a few

keystrokes, more sophistication was soon desired. The following is a partial list of significant features

the authors believed important enough to include in the initial editing macro package.

capability of inputting various kinds of information easily and efficiently

0 instantaneous graphical display of fonts and font information

0 a complete context-sensitive help system for and the editor

automatic text reformatting and w control code modification

representing T$$ macros as modified ASCII characters

2. Editing Environment
The text editor of choice is KEDIT, the PC version of the IBM mainframe editor XEDIT. KEDIT is

an extremely powerful and versatile editor. Together with the procedural language REXX, practically
any task can be simplified to the touch of a key. The principle advantage of KEDIT, because it is

programmable, is that it can emulate most text editors (not word processors). Users of this interface

will not need to learn a new editor - a fate on par with a root canal gone awry. KEDIT can be made

inanely simple, such as EDLIN, or as sophisticated and complex as the user desires. Thus, the TEX
interface is completely uncoupled from the editing process.

There are several features within KEDIT that enable it to be so versatile. It allows the user to

create synonyms, such that any command can be called by a different name. For example, the term

"translate" could be substituted for the command move, if that term was more comfortable to use. It

can also be abbreviated to any length desired. Using the same example, the "translate" synonym could
be specified as "tr", "tran", or "transl". The ability to define macros and assign them to almost any key-

or user-defined command name is what makes KEDIT unarguably superior to non-programmable text

editors. These macros can be simple functions used to save key strokes for frequently used commands
or a technique to avoid having to go to the editor's command line or to DOS to perform a certain task.

The macros are also able to call other macros, such as the 'I)$ interface, which can all be accessed by

hitting a single key.
A rudimentary example of redefining keys in KEDIT is the authors' modification of the opening

and closing curly brace and square bracket keys. Whenever the user is in the editing environment, an

opening square bracket [will return a C character. Likewise, a closing square bracket I will return a

) character. This is useful not only for m, where square brackets are not generally used a s control

characters,l but also for C programming. To eliminate confusion, one of the authors has actually

switched the keys on his keyboard to signify this modification.

Mansfield Software Group's Personal REXX is an easy to understand yet powerful procedural

language written specifically for the IBM-compatible personal computer.2 Besides an extensive array
of commands for file handling, text manipulation, and parsing, the one feature that is primarily used

in Personal REXX is windowing. This greatly simplifies the T@X process by using windows to display

various types of helpful information or to control various options.

3. Interface
A single keystroke invokes the Tj+ interface. Presently, this is reserved for the F10 key. When this

key is hit, two windows will be displayed, as shown in Figure 1.
The top window has five categories of control: Format, Inpu t s , Preview, P r in t , and Spell

Check. The particular w formatter (e.g. W T l , 'I)$, IATEX, pQX. . .) which can be toggled by
hitting the F4 key, will appear in the highlighted box in the upper left; in this case, the formatter is

W T l . The left window shows the function key options for format control, which are self-explanatory.

Note that the authors are referring only t o w, and not aTEX, where the square bracket is of course as

crucial as t h e curly brace -Ed.

REXX is also available on several other small computer platforms; for descriptions, see Kubik (1989) or

Tokicki (1988), both on Amiga REXX.

752 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 1: Screen display of the invoked T)$ interface

Control is cursor-selected using the left and right arrow keys. Hitting the right arrow key will highlight

the Inputs control option and a new lower window displaying six new function key options will appear.

The function keys F1 through F6 are used for inputting W T 1 blocks, W T 1 models, font sets, math
sets, specific fonts, and tables, respectively. This control option will be discussed in more detail in the

next section.

The two control options Preview and P r i n t are similar in function. The F1 key will list those

files in a window that have already been formatted (dvi files) and can be cursor-selected to preview or
print. The F2 key for the print control option will list those files that have previously been prepared for

printing (for the authors' systems, * . hp files). The remaining function keys modify how the output will

be presented. Specific to the print control option, an additional window display is located in the lower

left that provides a general perspective of how the printer output will appear. The starting and ending
page of the document will be shown in the upper right corners of the "pages". The orientation is also

clearly displayed as being either portrait (right-side-up) or landscape (sideways). The short paragraph

written on the starting page is a summary of options that cannot be easily shown in text-mode. These
options include the number of copies per page, the margin offset for odd and even pages, magnification

of the print, and whether font information will be echoed prior to printing. Figure 2 shows on example

of the print controller option.

The options used for a particular printout can be saved to file. For sets of options that are used

frequently, these files can be quickly retrieved by hitting the F12 key and cursor-selecting the file that

contains the desired printing options. Once selected, the short paragraph displayed on the starting

page will reflect a summary of the new options.

The last control option, Spell Check, loads a spell checking utility into memory when the F1

key is hit. The authors have installed Webster's New World Spelling Checker on their systems. Any

spell checker, however, can be used to suit the taste of a particular user. The dictionary option, which

is activated by hitting the F2 key, will open a window that lists several auxiliary dictionaries that

may be cursor-selected and added to the standard dictionary. This is necessary for files such as 'I)$,

that contain numerous commands or markup which would not normally be accepted by a standard
dictionary. The auxiliary dictionary may have a list of "incorrectly" spelled commands that the spell

checker will assume to be correct and thereby speed up the process. Under the Spell Check window

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 753

Figure 2: Screen display of the print controller option for the 7&X interface

appear several other utilities to "aide" in the writing process. A dictionary and thesaurus may be
loaded. Also, Rightsoft's Rightwriter may be invoked on the TEX source file.

4. Inputting Information
The authors learned TEX and how to use the W T 1 macros at Washington State University (Pullman,

WA), where the W T 1 macros were developed. The T)jX interface at WSU (on an 13M mainframe)

was what the authors first modeled their original interface after. The Q X T I macros have the somewhat

unique ability to change the global format from within the T@ source file, see w T 1 (1987) or Riley
(1989). This can best be accomplished by loading basic document control files (blocks) from disk into

the 7&X file. The document control blocks are simple ASCII files that contain the necessary W T l

markup to alter particular formats. This allows document processing to be greatly simplified. From

within the editor, it is possible to open a window, display the 37 document component blocks (by
name) and cursor-select any formatting block that will automatically be loaded into the file being

edited. Figure 3 shows the screen after the window has been opened, displaying the m T 1 document
control blocks.

For example, if a document is being created with a non-standard paper size and margin widths,
loading the page. blk block into the current file (page-p in Figure 3)

% Default page dimensions and margins
\pageformat(\pagelength(llinl % 792pt = Ilin

\pagewidthC8. 5in) % 612pt = 8.5in

\t opmarginC lin) % 72pt = lin

\bottommargin(lin)

\lef tmargin(l.2in) % 86pt = I. 2in
\rightmargin(lin)

\bindingadjust(Oin)

)% end pagef ormat

\normalbottom % text height will be the same for each
% page. Bottom lines will be even.

754 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Figure 3: Sample window display of W T I control blocks that may be selected for insertion

and changing the dimensions of interest (substituting values within the appropriate {) braces), will

easily adjust the page format. Markup does not have to be remembered, nor syntax for typing the

markup, and time is saved with respect to loading the same file from DOS. The ability to also include
document models or style sheets at the touch of a key is equally simple. It is this process that makes

creating T)$ documents a much easier task in comparison to manual insertion of Tj$ control codes.

The window interface allows the user to display and easily select any font available to w. This
is accomplished by displaying all files with an extension of * . tfm into a window (a scrollable window

since there are usually so many files) and then cursor-selecting as many of the font names that are

necessary. The macro will read the name, perform a decimal-to-roman numeral conversion on the font
size within the file name, and then insert a line into the TEX file that correctly loads the font for TEX.
For example, to load the font cmssil7, a window is displayed with all the font names, much like Figure

3, and the user cursor-selects the cmssil7 font by hitting the Enter key. Upon leaving the window,
the current line in the editor will have the following line added after it: \f ont\cmssixvii = cmssii7

a t 17pt (this can be seen in the second line of Figure 5). This not only saves time and frustration

looking up what fonts are available, but also introduces a consistent font nomenclature. The authors

also like to keep the following types of files located in this input window environment:

W T l blocks

TEXT1 models/style sheets

T&YTI font sets
W T 1 math sets

multiple ruled and aligned table formats

graphical input files (e.g., clip art and scanned images)
Font Metric files (tfm files)

75 standard Computer Modern (CM) fonts
63 W T 1 fonts

0 resident and cartridge printer fonts
down-loadable soft fonts

0 Postscript fonts

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Whenever the highlighted section or "cursor" is located on a file name that can be selected for
input to the current file, hitting the F11 key will open another window that contains the contents of

that file for immediate viewing purposes. This feature is used throughout the interface as well as other
editing utilities.

4.1 Graphical Help Facility
The ability to easily display font files in a window for automatic selection led to the desire to have

a graphical display of the fonts. This would give the user an idea of what the fonts would look like
on an output device without having to use a previewing program or a sample printout. It could

also be used to show what default sizes and magnifications were available, and how to invoke them.
Two commercially available software packages, ZSoft's Publisher's Paintbrush and PCX Programmer's

Toolkit, were used to create this graphical font help system.

The graphics format used is ZSoft's pcx format, a pseudo-standard in the PC arena for graphics.

The latest version of ZSoft's Paintbrush package includes a utility called hp2pcx. exe. It converts files

(both graphics and text) produced for the HP laser printer to the pcx format. Thus, it is a trivial
process to convert Tj$-generated laser printer output to the pcx format.3 Another utility, called PCX

Programmer's Toolkit from Genus Microcomputing, is needed however, to quickly display the graphical

file within the text-mode editing environment. The tool kit contains several useful PCX utilities; one
will take a group of pcx files and load them into a library and another will instantaneously display

the pcx file to the screen from a library.4 This provides sample font files for all of the TJ$ fonts to be

stored in one common library and displayed at the touch of a key from within the editing environment.

The process of generating the standard 75 TEX font files (plus as many as needed for specific resident

printer fonts, soft fonts and the like) was simplified by creating a database of the font names, sample
output text, and the sizes of available fonts. Tj$ could then produce the entire set automatically. This

font database was formatted with W T l using one driver file that contained the necessary \ h a l i p

commands and markup to produce the * . dvi files. A DOS batch file would convert all the *. dvi files

(using \mapif ication=473) to a temporary * .hp file (HP LaserJet format, 300 dpi) and then convert
the files to the pcx format. The files are loaded into a library and are available for display within the

editor. Figure 4 is an example of a graphical font display file.

Besides the graphical font display, the authors have found that other information is easier to

comprehend by means of graphical output rather than by using just standard descriptive ASCII text.
For example, when loading font sets with W T l , a graphical display file of the particular family shows

which faces are available. Also, general TJ$ help files are available in graphics format to illustrate

quote marks, dashes, special characters, and ruled tables.

5. General Help Facilities
Several help facilities have been written to assist the user not only with the interface but also

within the editor and KEDITIREXX macros. For each screen or window, the function keys (Fl--F12)
are usually displayed along the bottom of the screen (see Figure 1) with an abbreviated word or phrase

describing their function. Complete and separate help menus for key combinations involving the A l t

and C t r l keys will be displayed by hitting the key combinations Alt-h and Ctrl-h, respectively.

Particular to 'J$$ files (any file with an extension of *. tex) , C t r l - \ will determine if the cursor is on

a TEX command; if so, an ASCII help file describing that command will be shown in a window that
can be scrolled forward and backward using the PgDn and PgUp keys. When the A l t - \ combination

is hit, a listing of TJ$ commands, their correct abbreviations, and short synopsis will be shown in a

window. The same help information as for the C t r l - \ key combination can then be accessed by hitting

the Enter key when the highlighted line is located on a particular command.

3 Tha.t is, it is the TEX output, consisting of the METAFONT-produced down-loaded *.pk font files in HP's pc l

format, that gets converted t o the Paintbrush *.pcx format. This process is not available with most graphics

conversion utilities, e.g. Hijaak or IMSI's Graphics Transformer. However, hp2pcx has never disappointed the

authors.

The utility supports standard graphics cards (CGA, EGA, VGA, and Hercules), as well as Super VGA cards

(8 0 0 ~ 6 0 0 modes provided by Tseng, Paradise, and Video Seven). The automatic display mode can easily be

over-ridden t o force an image onto the screen in any desired mode.

756 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 4: Typical 'I$$ graphical font help display file

5.1 Example of a REXX Editing Macro for TEXTI Conversion
There is a feature that eases the creation of w documents that can serve as an example illustrating

the inter-relationship between the editor and REXX, the procedural language. Displaying the text

on the monitor in a form that resembles the format after 'I$$ formats the text is a desirable way to

edit and view files. For example, a file could have one line of text that will produce three lines
of centered text when formatted and printed. It would be more readable to have three centered lines

appear in the editor.

Taking this one step further, and using outlines as an example, it would be suitable to have text
appear in outline format on the screen with text incrementally indented for each outline level. Also,

for editing purposes, it would be advantageous to allow the particular outline level to be easily changed

to another level. In one operation, the text will be reformatted for the screen display and the TEX
control sequences that format the text will change to alter the final 'I$$ output. This is performed
within the editor by hitting one key, Alt-L, that loads the key definitions for list levels and displays

the definitions along the bottom of the screen, as shown in Figure 5.

Keys F1 through F7 will create up to seven levels of outline lists, while Alt-F1 through Alt-F7

will, if the cursor is anywhere within an outline level, alter the current indent level. For example, if the

outline had a section in the third indent level and the user wanted to alter this to a second level, then

hitting Alt-F2 would change \li13 t o \ l i l z 5 and re-format the text with appropriate indentation.

This feature allows quick and painless editing of list levels for W T 1 .

6. Problems and Idiosyncrasies
No system is without its flaws. There are some recommendations on the use of the interface that

significantly increase its performance. The way REXX is located in memory, applications should not
be made resident while the user is in the KEDIT environment unless they are removed from memory

before exiting the editing environment. The availability of LIM Expanded Memory Specification (EMS

memory) alleviates the problem of overloading DOS with large macros or window information. To make

the system run faster, the macros should be placed in a virtual disk. A significant amount of time is

Here, \ l i 1 3 and \ l i 1 2 stand for \ l i s t l e v e l 3 and \ l i s t l e v e l 2 , the automated list macro for the W T 1 macros.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 75 7

Figure 5: Screen display of outline list file in list editing mode.

taken if macros have to be constantly read from the hard drive. The T)-$ interface has been designed

assuming the user has an extended keyboard; the standard keyboard restricts a portion of the features
of the interface from being applicable. At this time, there is no elegant accommodation for the standard

keyboard.
From an aesthetic viewpoint, the standard PC graphics cards (e.g., VGA and EGA) include the

option of setting the number of lines that are displayed on the screen. The authors prefer 28-line mode
for several reasons. Many of the utility macros, although still functional in other line modes, simply

look best in 28-line mode. Also, the authors have modified many of the default ASCII characters

(those above decimal 128) to letters and shapes that are useful for display solely in this mode. These

modified characters can be made for other line modes, but, although not a difficult task, it is very time
consuming. The entire Greek alphabet, including upper-case letters, has been installed in a modified

character set. These Greek letters, which represent simple ASCII numerals, are macros that will print

their corresponding character. This "substitution" is useful for typing mathematical equations. Not

only will the equation appear more representative of what will be printed, but will also shorten the

typed length in the file, thus making it easier to read and debug. The authors have also added character
shapes that permit two types of three-dimensional border effects and a descending capital E used in a

text-mode w. are shown in Figure 1.

7. Portability
The practicality of the TjjX interface would not be appreciated if it could not be easily transferred
to other PCs with a wide variety of associated hardware and support software. The first attempt to

copy the TEX interface to another computer proved to be awkward, because the authors had written

into the macros several commands that were specific to the directory setup and hardware of the host

computer. Some major modifications were immediately implemented. All paths and file identifications

were removed from the macros and condensed into a single file, called conf i g . kex, from which each
macro then calls and retrieves particular information. Therefore, the only file that needs to be altered

when copying the KEDIT and REXX files is conf i g . kex. which will "personalize" the TJ$ interface

for individual PCs. In addition, there are REXX functions located in several utility macros that are

able to distinguish the hardware setup of the user's computer. For example, the REXX pcfloppy

758 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

command will return the number of floppy disks available to the system. This command is useful for

a PCTOOLS-type of utility that enables the user to easily move to and scan other directories.

8. Conclusions
The TJ$ interface has served the intended purpose the authors were originally trying to achieve: to

speed up the creation and modification of TEX documents and to bypass the need to memorize markup.

In the process of creating this interface, many additional macros, not necessarily related to TEX, were

implemented to complement the editing software. There are a number of projects the authors feel

would be extremely useful for the interface but have yet to be accomplished or finished.

1. The formatter, Arbortxt's p w , when encountering an error, will not return the line number

of the error back to the calling routine. I t would be convenient to immediately return to the

location of the error in the editing environment so that it can quickly be corrected. However, there
is a roundabout solution to this problem. The error line number is written to the * . l og file that is

created when the TEX file is formatted. It is possible to read from this log file and retrieve the line

number, but this method is exceedingly inefficient. The authors will wait for the next version of

pT)$ to see if this problem is addressed. Hopefully, by means of setting an environment variable.
2. An example of the auto-reformatting of text has been presented in this paper for T ' T l ' s list

level markup. Similar auto-reformatting will include block quotes, labels, centerlines, hanging

paragraphs, justification (right and left), and subheadings.

3. Many of the W T l font sets are incomplete. For example, a majority of the font sets omit the

bold italic font. In the future, all the font sets will contain the six standard text faces: roman,

bold, italic, typewri ter , SMALL CAPS, and bold italic. These extra faces will be created using

PC-METAFONT.

4. An interesting addition to the input control option of the interface, besides those already mentioned,
would include clip art. The integration of graphic pictures and figures that could be cursor-selected

and viewed (similar to the font sets) would be very useful. This addition is already in progress.

There is virtually no limit to the TEX interface, other than given that it is a text-mode only editing

environment. The foundation has already been made; all new ideas are simply "tacked" onto the

option windows and given new function keys to implement them.

Bibliography

Kubik, Kim. " A m i g a w . . . or How Envy Was Resisted and Knowledge Found on the Road to

OoC." TUGboat 10:65-67, 1989.

Riley, Don L. Using W T I : A Set of 5!&X Macros at Sandia. Livermore, CA: Sandia National

Laboratories, SAND89-8238, 1989.

Rokicki, Tomas. "The Commodore Amiga: A Magic TEX Machine." TUGboat 9:40-41, 1988.

 TEXT^ : Reference Manual. Computing Service Center, Washington State University, 1987.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

