
TUGboat, Volume 11 (1990); No. 1

4 Conclusion

We have presented a new approach to adapt the page layout of the document styles

that are part of the standard L A W distributions to the dimensions of A4 paper. The

width of marginal notes has been taken into account and a means to get wider marginal

notes a t the cost of shorter lines in the main body of the text has been provided.

References

[l] K.F. Treebus. Tekstwijter, een gids voor het grafisch verwerken van tekst. SDU

Uitgeverij ('s-Gravenhage, 1988). A Dutch book on layout design and typography.

0 Nico Poppelier o Johannes Braams
w n i q u e PTT Research Neher Laboratories
Washingtondreef 153 P.O. Box 421

3563 KD Utrecht 2260 AK Leidschendam
PoppelierC3hutruu53.bitnet JL-BraamsQpttrnl.nl

Some Macros to Draw Crosswords*

B Hamilton ~ e l l y t

Abstract

The crossword environment is intended to be used to typeset crossword puzzles for use

in newsletters. etc.

Contents

1 Introduction 103 3 Creating the Grid 108

1.1 How to Specify Clue Num- 3.1 Macros used when Popu-

bers 104 lating the Grid 110

3.2 The \ c lue Command . . 112

2 Definition of the Macros 106 3.2.1 Finding the clue

2.1 Counters and Lengths . . 107
number to be set

in the light 114 -
2.2 Reading and Writing the 3.3 Populating the Crossword

Clues. 107 Grid 114

2.3 Tabulating the Clues . . . 108 3.4 Setting the Grid 116

List of Figures

1 A Sample Crossword . . . 105 2 An example of the cross-

word* environment 106

T h i s file is v2.7, dated 16 Oct 89

!Especial thanks to my colleague Niel Kempson for many helpful suggestions, and

to Frank Mittelbach of the Johannes Gutenberg University of Mainz, who saved me

two pages of code!

TUGboat. Volume 11 (1990), No. 1

1 Introduction

As a small diversion from the statis-

tics of computer availability, lists of new

software. and the like, Computer Centre

Newsletters often include a crossword for

the amusement of their readers.'

The macros presented in this document

provide a WTEX method of typesetting

these, and also assist the composer to

ensure that the "grid" all goes together

correctly. The grid generated is the more

usual form, with black squares separating

the "lights" which receive the answers to

the clues. Work is in hand to be able to

handle the Mephisto/Azed type of grid,

in which only thicker grid lines separate

the lights.

A sample crossword appears as Figure I :

I've left the grid blank for those who want

some intellectual exercise: those who

don't can cheat by reading the source

listing at the end of this article!

The whole crossword, including the

\c lue commands (q . u .) , is bracketed

within the crossword environment. This

requires that the user specifies two pa-

rameters:

(grzdsize) This is a number which spec-

ifies the columns (and rows) in the

square grid.

(uzszble) This controls whether the an-

swers are to be -filled in"; obviously

of no use for publication. but useful

whilst composing the crossword. If

the parameter provided is the letter

'Y', then the answers will be type-

set; if 'N ' then the lights will be left

blank. -4ny other value2 provided

for this parameter will cause LATEX

to input a yes/no answer by interac-

tion with the user.

An analogous environment is provided

especially for typesetting a smaller ver-

sion of a grid showing, for example. -Last

Month's Solution". In this of course, the

answers always appear. and the clues are

not printed. Again it takes two parame-

ters:

(gridsite) As before. this specifies the

number of squares in each axis.

(header-text) Some text which will be set

(in bold) above the completed grid.

Figure 2 shows an example of the cross-

word* environment.

Within the body of these environments

appear a succession of \c lue commands;

each of these takes a total of seven (!)
parameters:

(clue-number) The number of the light

on the grid. for example (17).

See 1.1 below for details of how more

complex specifications may be given

for multiple lights.

(Across/Down) This parameter must be

either the letter 'A' or 'D'. in upper-

case.

(col-number) The x-coordinate of the

first square of the light. The left-

most column of the grid is numbered

1.

(row-number) The y-coordinate of the

first square of the light. The top-

most row is numbered I .

(answer) The answer to the clue (or

that part of it which appears in

the light numbered (clue-number)).

This must be a string of upper-case

letters only; no spaces. punctuation.

hyphens. etc.

(text) The text of the clue itself. If you

want to use any IPTD macros in this

text, such as \ do t s . each such macro

must be preceded by \noexpand.

This includes such macros as \&. to

produce an explicit ampersand.

(help) Anything to appear after the text.

in parentheses: this will most usu-

ally be used for giving the length of

the answer. such as "7" or '-2.6.3-

3". Also used when the text of the

clue is assoriated with another light

when this parameter may say some-

thing like .'see 14d".

' That at RMCS has a bottle of wine as a prize!

The lower-case letters .y' and 'n' are also recognized

TUGboat. Volume 11 (1990). No. 1

1.1 How to Specify Clue

Numbers

Sometimes the solution to one clue is

split amongst a number of "lights". To

cover this eventuality, provide a \ c lue

for each of the lights involved. with the

solution to that light alone given as

(answer) . All except the \ c l u e corre-

sponding to the first light of the solution

should have a null (t e x t) , and the (help)

parameter should be something like '.see

7d".

If this final parameter is totally empty,

no corresponding clue number is printed:

this facility would be used when the cur-

rent (:111(, is the next consecutive light.

when it is usual to omit any further ref-

erence to the clue number.

The \ c lue for t h ~ first light of the solu-

tion should provide the e n t m clue as its

(t ex t) . and the (help) should say some-

thing like "7.3-3". The (clue-number)

field should consist of the number of that

light. followed immediately by the text

required to describe the other lights. sep-

arated from it by some non-digit charac-

ter, for example. a space.

For example. suppose the clue "Bill's desired outcome?", has the solution 'ACT OF
PARLIAMENT' which is to go into lights 9d and 13a. Then3

\clue{l3){A){5){l){PARLIAMENT}{){see 9d)

\clue{9 C\noexpand\rm\&) 13a){D){1){1O){ACTOF)%

{Bill's deslred outcome?){3,2,10)

will produce

13 (see 9d)

amongst the ACROSS clues. and

9 & 13a Bill's desired outcome? (3.2,10)

amongst the DOWN clues

2 Definition of the Macros

As always. we start by identifying this version of the style file.

\typeoutCStyle option: 'crossword' \fileversion\space\space

<\filedate> (BHK))

\nlnept We define a new font size to ensure clues are set at 9pt. no matter what style size option

\allst1 is in effect. This command also defines suitable parameters for list environments set

in this size of type.

\def\nineptC\@setslze\nlnept{llpt)\lxpt\@lxpt

\abovedlsplaysklp 8.5pt plus 3pt mlnus 4pt

\belowdlsplaysklp \abovedlsplaysklp

\abovedlsplayshortsk~p \z@ plus2pt

\belowdlsplayshortsk~p 4pt plus2pt mlnus 2pt

\def \@listi{\itemsep Opt

\parsep \z@ plus Ipt

\topsep 4pt plus 2pt mlnus 2pt

13

2.1 Counters and Lengths

\~fnumberlt The crossword environment draws a grid (with black and white squares): each "light"

\numberlttrue into which a clue's answer is to be written has to be numbered, and this number will

\numberltfalse be typeset (using \ t i ny) in the top-left corner of the first square of the light.

note the \noexpand before the \rm for the \&

TUGboat , Volume 11 (1990); No. 1

ACROSS
Points a thousand tested for witchcraft. (4)

Gourmet's triumphant cry on finding

middle-cut Pacific salmon! (3)

One hundred stride backwards across a

Pole. (3-3)

Fifties' jazz record about Eastern childs'

play. (2-4)

Timetable created by editor in synagogue

of Spain. (8)

The dialect a girl mixed up tangle around

symbolic diagram used by maritime stu-

dent! (15)

Wire fastening bent road narrowly. (7)

Hammerhead consumes German company

and casts a shade. (7)

Strange cel alien chops to make a figure with

odd sides. (7,8)

Sounds like a hoarse editor came to in total!

(8)
Assert without proof everyone, for example,

English. (6)

Flourished examination of flowers. (6)

Floor covering discards fuming sulphuric

acid and returns to nothing. (3)

"Latin for a candle" to be silent note about

aircraftman? (4)

DOWN
1 Water rush noise disturbs show so! (6)

2 Mischievous child with cloth measure hesi-

tates to assemble rotor. (8)

3 Mercifully inclined to pass round ten? Nay.

about short blower! (15)

4 Sort ion? An isotron gives it a new twist!

(7)
5 Wildly and boisterously rearrange Billy

May Third, roughly. (15)

6 Satirical book or film-give odds about re-

vision of "Dune"? (4-2)

7 & 24 Premier took in a Lord Lieutenant and

all played an old game in London street. (4-

4)
14 Work expended in power games? (3)

16 A church circle (or part of one). (3)

18 Encircle hindrances under hair in long curls.

(8)
19 Boss over otorhinolaryngology department

undergraduate. (7)

21 Old dovecote in Parisian museum. (6)

22 Like ornamental fabric, for example, that's

in bequest. (6)

24 (See 7)

Figure 1: A Sample Crossword

TUGboat, Volume 11 (1990), No. 1

Last month's solution

Figure 2: An example of the crossword* environment

This style option also provides the crossword* environment, which is intended to be

used to produce "last month's solution" in a smaller grid. There is insufficient room for

clue numbers to appear on the grid in this mode, so \ifnumberit is used to indicate

whether the numbers should be set.

\gr@dsize The counter \gr@dsize is used to hold the width of the grid, as the number of squares
\p@csize in each direction.

To prevent too much run-time arithmetic, the counter \p@csize is set to be one count

higher than \gr@dsize.

\Down As we move around the grid, determining whether squares are black or white, we

\Across utilize the counters \Across and \Down to keep track of our location.

2.2 Reading and Writing the Clues

\tf@acr Whilst we are determining the appearance of the grid, we copy the text of each of the

\tf@dwn clues to an auxiliary file. so that the latter may later be read back to generate the

\OpenClueFiles clues themselves after the grid has been printed.

This macro opens a new file. with file extension .acr , and puts into it the commands

necessary to typeset the Across clues. It also opens a .dwn file, which is similarly filled

with the Down clues.

These files are created in the same manner as table-of-contents (. t oc) files, etc: thus

IP-rn will create file "handles" with names \ t f Q a c r and \tf@dwn. However, that

would ordinarily attempt to read the given file first, and also might defer the ac-

tual opening; therefore, we start a new group in which we redefine UTEX'S @input

c:onirriand and m ' s \openout primitive.

TUGboat. Volume 11 (1990), No. 1

Here's the preliminary material that gets inserted into the . acr file.

\@writefile~acr~~\string\begin~minipagel[tl{70m~~

\@writefile{acr){ \string\centerline{\string\bf\ ACROSS)}

\@writefile{acr}{ \string\sloppy}

\@writefile{acr}{ \string\ninept)

\@writefile{acr}{ \string\begin{ClueList})

Whilst something similar goes into the . dwn file.

\Qwritefile{dwn~{\string\begin{minipage}[t]{70m))

\Qwritef ile{dwn){ \string\centerline{\string\bf \ DOWN})
\Qwritefile{dwn){ \string\sloppy)

\Qwritefile{dwn}{ \string\ninept)

\@writefile{dwn){ \string\begin{ClueList}}}

\CloseClueFlles After the grid has been printed, we can close the "clues" files; these will later be read

back in (by the \endcrossword command) to set the text of the clues below the grid.

Before closing, we insert the material that completes the two ClueList environments:

firstly across. . .

Then for the down clues.

Now we can close those files, and make them "invisible" if someone tries to write to

them.

2.3 Tabulating the Clues

The auxiliary files contain the texts of the clues. each given as an \ i tem for the ClueList

environment. This is similar to a description list. except that overlong labels run on

into the text rather than sticking out to the left.

\ClueLlst This sets up the ClueL~st environment. and defines the appearance of the label.

\C1ueL1stLabel \def \ClueL~stlabel#l{\hspace\labelsep {\bf #l}\hss}

\def\ClueL~st{\l~st{~{\labelw~dth\leftmarg~n

\advance \labeluldth by -\labelsep

\let\makelabel\ClueL~stlabel}}

\let\endClueLlst\endllst

\PrlntClues The following macro reads in the two files (of Across and Down clues), and sets them

alongside each other. separated by a vertical rule. Clues are set in the style of the

ClueList environment.

\def\PrintClues{%

\centerline{%

\begin{tabular){ c I c)

\Qinput{\ j obname . acr)
&

TUGboat. Volume 11 (1990), No. I

3 Creating the Grid

The remaining commands are concerned with creating (and. optionally, populating)

the crossword grid

The crossword environnient takes two parameters: uzz. the size of the matrix. and the

indication of whether the grid is to include the answers. (If the latter is omitted,

IPW will request it interactively.)

\def\crossword#l#2{%

We start off with a \ v t op box and a group to hold everything within the environment,

so as to ensure that user-entered text remains with the crossword.

\endgraf \leavemode

\vtop\bgroup

The crossword environment uses the full-size grid, and has the lights numbered. Fur-

thermore it doesn't have any heading to output (see the crossword* environment).

We now open the auxiliary files into which the clues are written, and determine (in-

teractively if necessary) whether the answers are to be written into the grid.

\OpenClueFiles

\TestAnswers{#2)%

Finally, we generate the necessary macros to describe the grid as being entirely filled

with black squares; for each square. a macro whose name is of the form \RiCi.

\RxiiCviii, etc. is created. As the \clue commands are read in. these will be rede-

fined to produce the correct appealance when the macros are later expanded.

\SetUpGrld{#l))

When all the clues have been processed. we can invoke \FinishGrid to draw the grid.

The \FinishGrid and \Printclues commands draw the grid and tabulate the clues.

respectively. By enclosing them in a vertical mode list. we ensure that they remain

stuck together on one page!

The crossword environment defines \Header to be empty, but the user may give it an

explicit definition within the environment: if so, we'll print it just above the grid itself.

We can now finish off the auxiliary files and then read then1 back in to set the text of

the clues below the grid.

Finally. we complete the group and the \vtop box.

\CloseClueFiles

\hbox{\PrintClues)%

\egroup

1

The crossword* environment doesn't need a second parameter to control printing of

answers. because it always populates the grid with the answers. Instead. its second

parameter provides the text to appear above the printed grid. Its actions are as for

the crossword environment except that

TUGboat, Volume 11 (1990), No. 1

It prints the descriptive text above the grid.

It always outputs the answers, without numbers.

It draws them in a smaller box.

It doesn't output the clues (it doesn't even open any auxiliary files!)

3.1 Macros used when Populating the Grid

\ l a t er l e t t er The following macro calls this to "place" the letters of a solution by defining a macro

unique to this square.

\next le t ter To determine how much space is required for the light corresponding to an answer.

\nextlet we need to cycle through each of the characters of the answer individually: this macro

is called with two parameters - the first indicates the current setting direction (and

thus accesses one of the counters \Across or \Down), whilst the second consists of the

characters forming the answer followed by the string \@nil. When it is called, this

"second" parameter is not enclosed in braces, so only the first token in it is accessed.

The macro calls itself recursively to process the remaining characters until the \@nil

has been met.

If the next token is \@nil, we've finished; the \let ensures that its parameter will

be discarded (through the LKQX internal command \@gobble) and the recursion will

then unravel.

Otherwise, we have another letter of the (answer) in #2, so we call \letterput to

define the macro corresponding to this square, and count one more position occupied

in the current direction.

After we've processed this letter, we want to call this routine recursively to process

the remaining letters (if any). . .

These letters cannot possibly require a starting square number. so we use a simpler

macro for these later letters.

This is where we either exit from the recursion (and \@gobble the #1 parameter) or

call the macro recursively to process the next character; the direction has to be passed

on as the first parameter for \nextletter or \@gobble.

TUGboat. Volume 11 (1990), No. 1

\if need@d

\need@dtrue

\need@df alse

\if Noerr

\Noerrtrue

\Noerrf alse

Later we shall want to check that the square into which we are '.putting1' a letter is

either black (and hence should be cliangrd to contain the character) or has already

had the same letter put into it by an intersecting light.

We don't want to expand each xparc.s' rnacros, so these tests have to use the \ i f x

primitive; therefore. we need a rriacw which has the same substitution text at the

hzghest level.

\def\blacktest{\blacksquare)

As we create the macros corresponding to each occupied square. we have to decide

whether it is necessary to actually perform a (re)definition of the macro; the follow-

ing permits the code to determine whether such definition takes place (within the

\putsquare macro).

If an error is detected during the placement of the occupied squares, there will probably

be other errors; to save pouring out yards of error messages. we arrange to suppress

all but the first such; the following \newif provides this facility.

And of course we start without any errors!

To determine whether a square has already been occupied, and if so, by what, we

require a couple of new tokens which can be tested for as the result of a macro

expansion

The next two definitions can be temporarily \ l e t to be the replacements for

\ l e t t ersquare and \numbersquare respectively, for use in conjunction with the afore-

mentioned test.

\def\blank#l{\Plain)

\def\numbered#l#2{\Number)

When we first read the clues. we create macros which are unique to each square; later

we shall redefine the macros to which the squares' macros expand to actually perform

the setting, but during the first phase we require expansions which correspond to the

parameters alone. The following definitions are therefore used during the "filling"

phase.

As we scan the answers for each clue, this macro is called with a parameter which spec-

ifies a call of either the \ l e t t e r s q u a r e or \numbersquare macros (with appropriate

parameters).

It starts by assuming that no redefinition of the square's macro will be required.

\def\setsquare#l{%

\need@df alse

This macro is also called during the initialization of the grid, when we populate it

with black squares; therefore, we definitely want to perform a definition of the square's

macro at this stage.

TUGboat. Volume 11 (1990). No. 1

Otherwise, let's have a look and see what is already in the square's macro. This test

will succeed only if the square contains its initial definition (as \blacksquare).

\else

\expandaf ter\if x\csname\ther@w\thec@l\endcsname\blacktest

in which case we will want to redefine the macro for this square

If the square has already been redefined. it means we've already "put" a letter (or

number+letter) into its definition, so we will have to check that this definition doesn't

conflict with the new one (which is in #I). We have to expand the macros to perform

this test, but don't want that expansion to return anything except the letter which is

being (and has been) placed in the square. so we make a temporary replacement for

the two macros which might form our #I.

Now we expand the original definition and the new one; these should be the same!

If they aren't, it means the compiler of the crossword has made a mistake and

solutions which don't correctly intersect: tell him so (well, the first time anyway).

even provide the user with some help!

has

We

\lf Noerr

\errhelp{Two lntersectlng llghts tried to

put different letters--Jln the same square'

You've probably confused t h e n coordlnates.""J

Carry on, and examme the printout.)
\errrnessage{Illegal redefinltlon of square \ther@w\thec@l

Was: \expandafter\rneanlng\csname\ther@w

\thec@l\endcsname.

Now: \noexpand #I)

\Noerrfalse

\f 1

\fl

So far. we don't seem to need to change anything. but if the new #I which has been

passed to \putsquare specifies that it be numbered, we must subsume any existing

definition which doesn't have a number.

Again. we make temporary reassignments for the two potential macros, which is where

we make use of the two new tokens that we invented.

If the following test succeeds, we know that the new parameter specifies a number

as well as a letter. This code could be expanded to check whether the original def-

inition also specified a number, and if so ensure that they are the same. but would

anybody really be silly enough to give different numbers for clues starting from the

same square?!

TUGboat. Volume 11 (1990). No. 1 113

Now we know whether we must (re)define the macro which is unique to this square. If

we must, we expand our #I. so as to get the actual number and letter passed in through

that parameter, but keep the name of the placement macro itself4 unexpanded.

3.2 The \clue Command

Well. here it is at last. We start off by extracting the parts (if any) which form the

(clue-number) parameter. We will therefore have the purely numeric first portion of

the (clue-number) in \cluenumber.

We now examine the second ((Acros s /Down)) parameter of the \clue command to

determine whether this is an Across or Down clue. The clue's (t e x t) and (help) in-

formation is then written5 to the appropriate auxiliary file, and note taken of the

direction in which the (answer) should be set into the light of the grid.

Firstly we deal with writes to the .acr file. if the (Across/Down) parameter is the

letter ' A ' . In this case. the counter to be incremented is \Across.

If this parameter is the letter 'D'. writes go to the .dwn file, and the \Down counter is

incremented.

If this (Across/Down) parameter is not one of the two permitted characters, an error

message is issued.

\errhelp{The second parameter of the \string\clue\space

command must be 'A' or 'D'}

\errmessage{Illegal direction (#I) specification

for \string\clue. 1
\f i

\fl

The x and y coordinate counters are set from the (co lumn) and (row) parameters.

"his will he the first token of the parameter itself.

The writes only take place if the output files exist. and the (he lp) parameter is

non-empty.

TUGboat, Volume 11 (1990), No. 1

\letterput The \letterput macro is defined anew at the start of each clue to create the correct

definition for the first square of each light. The \setsquare macro redefines this

macro internally for the remaining squares.

Now we can call \nextletter which will cycle through all the letters of the (answer)

until meeting the token \@nil. As each letter is processed, it creates a definition for

the current square, initially using the above definition, and then \laterletter for

subsequent letters of the (answer).

Finally, we ensure that the newlines after \clue commands don't lead to unwanted

spaces being typeset.

\nextletter{\Direction)#5\@nil

3.2.1 Finding the clue number to be set in the light

\findnumber We mentioned earlier that clues with solutions which occupy more than one light

require a special format for specifying their (clue-number). If this form is required,

the number of the current light is given first, with the remaining text (as it is required

to be set) following, separated from the first number by some non-digit character.

The macro \f indnumber is called with the entire (clue-number) parameter passed to

\clue and sets \cluenumber to expand to the first or only number found in that

parameter (which should then appear in the first square of the light).

\clueNumber Of course, we require a counter in which to attempt to assemble that number:

\special@gobble This macro is used by \findnumber to discard the unwanted portion (if any) of a

(clue-number), including the special termination token.

The following mechanism to separate the first (or only) number from the remainder

was suggested by Frank Mittelbach of the University of Mainz, and replaced about

two pages worth of code.

\def\findnumber#l{%

We attempt to assign the (clue-number) parameter to the \clueNumber counter: only

that portion consisting purely of digits will actually be assigned. The remainder,

if any, including the special terminator sequence \@nil is then discarded by the

\special@gobble command:

If the user did not provide a valid (clue-number) (i.e. something starting with a digit).

then clueNumber will have zero assigned to it - seems the user ought to be told about

this!

This completes \f indnumber.

\ifnum\clueNumber=O

\errhelp(The first parameter of the \string\clue\space command

must commence with a digit)

\errmessage{Illegal clue number (#I) specified

for \string\clue.)

\fi

1

TUGboat, Volume 11 (1990), No. 1

\cluenumber This macro merely produces the number as saved in \clueNumber.

\def\cluenumber~\the\clueNumber)

3.3 Populating the Crossword Grid

\blackenrow For each column in a row we create a black square; effectively \setsquare will execute

the definition

so that for row 3 column 6 of a 15 x 15 grid. for example, we would end up by defining

\def\RiiiCvi(\blacksquare).

Before starting the inner loop. we need to save the definition of \body which was

created for the outer loop. We cannot do this by creating a new block. since that

would require that each square be defined globally, which might give rise to save stack

overflow problems.

\def\blackenrow.(\let\savedbody=\body

\loop\relax\if num\Across>\zQ

\setsquare~\blacksquare)%

We then shift ourselves back to the next column to the left and iterate. If we've

reached the end of this inner loop, we re-establish the definition of \body.

\SetUpGrid This macro creates an empty grid of the appropriate size

\def\SetUpGrid#l.(%

We firstly make a note of the (gridszze) parameter in the \gr@dsize counter, from

which the width and height of the grid may be computed. We also set the \p@csize

counter to be one greater than \gr@dsize to save our recomputing this quantity many

times over.

\gr@dsize=#l

\pQcsize=#l \advance\p@csize by \@ne

Right, this is where we start to generate the grid itself. We start at the bottom edge,

because loops are easiest if counting down to zero. Therefore, the \Down counter

is set equal to the highest row number attainable.

\Down=\gr@dsize

We now start a loop, so the following code will be repeated for each row of the grid

in turn. As with the rows, we process the columns from highest address to lowest, so

the \Across counter is also set to the highest column attainable.

\loop
\Across=\gr@dsize

Provided we haven't decremented down to the 0th row, we start off the inner loop to

process each column: this is done by invoking a separate macro - the alternative to

which would be to enclose the inner loop in a group, which would require the use of

global definitions for each square.

\ifnum\Down>\z@

\blackemow

Afterwards we move ourselves up one row; and iterate for the next row.

\advance\Down by \m@ne

\repeat

1

TUGboat, Volume 11 (1990). No. 1

And that's the end of \SetUpGrid!

\thec@l \ thecQl and \therQw macros generate a string of letters. starting with 'C' (for column)

\theraw and 'R' (for row) respectively. The remainder of the string consists of the lower-case

Roman numeral equivalent to the current value of the appropriate counter. Such all-

letter strings are used to create the names for macros which can be unique for each

square of the grid.

\def\thec~1{C\romannumeral\Across~

\def\ther~w{~\romannumeral\Down}

\TestAnswers This macro interacts with the user. if necessary, to get a yes or no indication of whether

the answers shall be written into the grid. No check is made that the user has entered

a valid response. but the use of \answer is such that any answer apart from a 'y' (in

upper- or lower-case) is treated as if it were 'n'.

\farst To determine what parameter has been provided, or the response elicited, we will

require a little macro to pass on the first token of a list terminated by a full stop.

\def\f@rst#1#2.{#1)

We commence by lower-casing the given parameter. setting the lower-cased version

into the macro \answer.

We can then extract just the first character

The we determine whether it's the letter 'y' or 'n'. . .

\if\answer y \else \if\answer n \else

If the (visible) parameter isn't either of these, we ask the user to give us an answer!

\typein[\answer] {Make answers visible? [Y/N] :)\f i

\f i

OK. \answer now contains some response; let's upper-case it and extract just its first

character

3.4 Setting the Grid

\letter This is the expansion which is used (for \ l e t t e r i n squa re , and within the expansion

of \nunberedsquare) when the grid is actually being typeset from the stored squares'

macros.

\nunberedsquare This macro is used (for \numbersquare) when the lights are being drawn with light

numbering enabled. It puts the number (and the letter of the answer too, depending

upon the definition of \ l e t t e r which is current) at the current coordinate position

specified by (\Across ,\Down).

To insert the clue number; we generate it within a sub-picture, of size equal to one

square.

\begin{picture)(l,l)(O,O)

TUGboat. Volume 11 (1990), No. 1 117

We stick the number in the top-left corner of an (invisible) box which fills the central

81% of the area.

\put (0.05,O .05){\makebox(O .9,0.9) [tll (\tiny #I)}

\end{picture)%

1

We also set the letter in the square (depending upon the definition of \ l e t t e r which

applies.

\letter(#2)}

Despite its name. this macro is invoked (through \numbersquare) for those squares

which would ordinarily carry a light's number. were it not for the fact that the numbers

have been suppressed by the crossword* environment.

It just discards the (clue-number) given in the first parameter and sets the current

letter by invoking \ l e t t e r . which uses the second parameter.. .

Now we can process all the stored macros which define the appearance of each square

in the grid, and thus generate the printed version thereof. using B w ' s picture envi-

ronment.

This command makes appropriate redefinitions of some macros which produced dif-

ferent effects during the filling of the grid.

\def\FmlshGrld{%

If the customer doesn't want the letters put into the grid, then we need only throw

away any parameter to l e t t e r .

\~f\answer Y \else \let \letter=\(Pgobble \fl

As stated in the introduction, when typesetting the grid in a smaller version. there

is insufficient space to include the numbers for the lights; by testing \ i f n p b e r i t we

can determine whether a macro which expands to \numbersquare shall result in a

number being printed or not.

\ifnumberit

\let\numbersquare=\nurnberedsquare

\else

\let\numbersquare=\unnumberedsquare

\f 1

Anything that's been stored as a \ l e t t e r squa re is "set" using the \T?t ter macro

(which we might have just \ l e t equal to \@gobble).

Any black squares that are still left in the grid are set by means of this command:

\def\blacksquare{%

The black square itself is merely a rule of the appropriate dimensions.

\put (\Across, -\Down) {\rule{\unltlength){\unitlength)))

Now we come to the actual body of \FinishGrid.

We start off at the bottom-most row of the grid.. .

The whole grid is created in a centered \hbox in a picture environment. By offsetting

the origin negatively. we can address each row by simply negating the y coordinate:

thus column x in the highest row is (x. -1).

\centerllne{%

TUGboat, Volume 11 (1990), No. 1

We now cycle through each of the rows. The first thing we output is a horizontal rule

of the full width of the grid, one such rule being generated for each row of the grid.

providing the horizontal lines across vertical lights.

Now we are about to cycle across all the columns of the current row; again, it's

convenient for us to work backwards to the left.. .

To do this we need an inner loop; this has to be inside a group so as to isolate the

effects of its \repeat command.

{\loop \ifnum\Across>\z@

To set the appropriate object in this square. we merely invoke the macro which has

been associated with the square. Thus we'll end up with a black square, or a numbered

or plain square. the latter two of which may also contain a letter.

Now we advance to the next column and iterate. That's the end of the inner loop for

each of the columns of the current row.

Now we can decrement down to the next row and iterate through the rows.

We've so far drawn a horizontal line under each of the rows; the next \put draws a

final line above the top-most row.

Similarly, a short loop can draw vertical rules a t the left-hand edge of each of the

columns, starting with a line on the left of an imaginary column to the right of the

whole grid, which will therefore form a line to the right of the final column.

And that completes the picture.

Finally, here's the input which produced the crossword in figure 1

% \begin{crossword){15}{N}

% \input{grid-1)

% \end{crossword)

where the file grid-1 . tex reads as follows:

\clue~8}{A){1){2}{~~~~){~oints a thousand tested for witchcraft.){41

\clue{9~~A~{6){2){OHO)IGourmet's triumphant cry on finding middle-cut

Pacific salmon!)(31

\clue{lO){A){l0){2){1C~~~~){One hundred stride backwards across a

TUGboat, Volume 11 (1990), No. 1

Pole.){3-3)

\clue{11){A){1){4){BOPEEP){Flf tles ' jazz record about Eastern chllds '
play. H2-4)

\clue{12){A){8){4){SCHEDULE){Tlmetable created by edltor In synagogue

of Spaln.){8)

\~~~~{~~){A){~)I~){THALASSOGRAPHER){T~~ dlalect a glrl mlxed up tangle

around symbollc dlagram used by

marltune student 1){15)

\clue{l5){A){1){8){HAIRPIN){Wlre f astenlng bent road narrowly.){7)

\clue{17){A){9){8){VMBRAGE){Hrnerhead consumes German company

and casts a shade.){7)

\ ~ ~ U ~ ~ ~ ~) ~ A) ~ ~) ~ ~ O) C ~ C A L E N E T R I A N G L E) { S ~ ~ ~ ~ ~ ~ cel allen chops to make a

flgure wlth odd sldes.){7,8)

\clue{23){A){1){12){AMOUNTED){Sounds llke a hoarse edltor came to In

totall){8)

\clue~25)~A)~lO)~12){ALLEGE){Assert wlthout proof everyone, for

example, Engllsh.){G)

\clue{26){A){1){14)(FLORAL){Flour~shed examlnatlon of flowers.){6)

\clue{27){A){8){14){NIL){Floor coverlng dlscards fumlng sulphurlc acld

and returns to nothlng.){3)

\clue{28){A){12){14){TACE){"Latm for a candle'' to be sllent note

about alrcraftman?){4)

\clue{1){D){2){1){SWOOSH){Water rush nolse dlsturbs show sor){6)

\clue~2~~D~~4~~1){IMPELLER}{M~sch~evous chlld wlth cloth measure

hesitates to assemble rotor.){8)

\clue{3~~D~~6~{l~{C0MPASSIONATELY~{~erc~fully lncllned to pass round

ten? Nay, about short blowerl){15)

\clue~4>~D)~8){1){TORSION){Sort Ion? An lsotron glves ~t a new

tw1st 'H7)

\C~U~{~)~D){~O)~~)(DITHYRAMBICALLY}{W~~~~~ and boisterously rearrange

Bllly May Thlrd, roughly.){15)

\clue{6)~D)~12)~l){SENDUP}{Sat~r~cal book or f~lm---glve odds about

revlslon of "Dune7'?){4-2)

\clue{7 {\noexpand\rm\&) 24){D){14){l){PALL){Premler took In a Lord

Lieutenant and all played an

old game In London street.){4-4)

\clue{14){D){14){6)CERG){Work expended In power games?){3)

\clue{l6){D){2){8){ARC){A church clrcle (or part of one) .){3)

\clue~18)~D)~12)~8){RINGLETS){Enc~rcle hindrances under halr In long

curls.){8)

\clue{l9){D)~8){9){STUDENT){Boss over oto\-rhmo\- laryng\-o\- logy

department undergraduate.){7)

\clue{21){D){4~{10){LOUVRE)(Old dovecote In Parlslan museum.){6)

\clue{22){D){14){lO){LEGACY)CLlke ornamental f abrlc, for example,

that's In bequest.){6)

\clue{24){D){2){12){MALL){){See {\bf 7))

o B Hamilton Kelly

School of Electrical Engineering &

Science

Royal Military College of Science

Shrivenham

SWINDON
United Kingdom

Janet: tex@uk.ac.cranfleld.rmcs,

