
TUGboat, Volume 11 (1990;, No. 2

Software

Exercises for QX: The Program

Donald E. Knuth

During the spring of 1987 I taught a course for

which Volume B of Computers & Typesetting was

the textbook. Since that book was meant to serve

primarily as a reference, not as a text, I needed to
supplement it with homework exercises and exam

problems.

The problems turned out to rather interesting,

and they might be useful for self-study if anybody

wants to learn m: The Program without taking a

college course. Therefore I've collected them here

and given what I think are the correct answers.

The final problem, which deals with the type-

setting of languages that have large character sets, is
especially noteworthy since it presents an extension

of m that might prove to be useful in Asia.

Some of the problems suggested changes in

the text. I've changed my original wording of the

problem statements so that they will make sense

when the next printing of the book comes out;

people who have the first edition should check the

published errata before looking too closely at the

questions below. But some problems (e.g. 25, 26,

and 32) assume the old 7-bit version of m.

Editor's note: The answers to the following ex-
ercises will appear in the November 1990 issue of

TUGboat.

The Problems

Here, then, are the exercises in the order I gave
them. Although they begin with a rather "gentle

introduction," I recommend that the first ones not

be skipped, even if they may appear too easy; there
often is a slightly subtle point involved. Conversely,

some of the problems are real stumpers, but they

are intended to teach important lessons. A serious

attempt should be made to solve each one before

turning to the answer, if the maximum benefit is to

be achieved.

1. (An exercise about reading a WEB.) In the Pascal

program defined by the book, what immediately

precedes 'PROCEDURE INITIALIZE'? (Of course it's

a semicolon, but you should also figure out a

few things that occur immediately before that
semicolon.)

2. Find an unnecessary macro in $15.

3. Suppose that you want to make work in

an environment where the input file can contain

two-character sequences of the form 'esc x', where

esc is ASCII character number '33 and where

x is an ASCII character between -9- and --'

inclusive. The result should be essentially equivalent

to what would have happened if the single (possibly
nonprinting) ASCII character chr (ord(x) - '100)

had been input instead. If esc appears without

being followed by an x in the desired range, you

should treat it as if the esc were ASCII character
number '1 77.

For example, the line 'A esc A esc a eoln'

should put four codes into the buffer: '101, '001,
'177, '141.

What system-dependent changes will handle

this interface requirement?

4. Suppose that the string at the beginning of the

print-roman-int procedure were "m2d5c212q5v5in

instead of "m2d5c215x2v5iU. What would be

printed from the input 69? From the input 9999?

5. Why does error-count have a lower bound

of - l?

6. What is printed on the user's terminal after 'q'

is typed in response to an error prompt? Why?

7. Give examples of how m might fail in the

following circumstances:

a) If the test ' t < 7230584' were eliminated from

$108.
b) If the test ' s 2 1663497' were eliminated from

$108.
c) If the test 'r > p + I ' were changed to 'r > p'

in $127.

d) If the test 'rlink(p) # p' were eliminated from

$127.

e) If the test 'lo-mem-maz + 2 5 mem-bot +
max-halfword' were eliminated from $125.

8. The purpose of this problem is to figure out

what data in mem could have generated the follow-

ing output of show-node-list:

TUGboat, Volume 11 (1990), No. 2

\hbox(10.0+0.0)x100.0, glue set 1O.Ofill loo

.\discretionary replacing 1 200

..\kern 10.0 300

. I \large U 1oooo

.I\large ^-K (ligature ff) 4oo,~ooo1,1ooo2

. \large ! 10003

.\penalty 5000 500

.\glue 0.0 plus 1.OfiU 600

.\vbox(5.0x0.5)x10.0, shifted -5.0 700

Assume that \large is font number 1 and that

\small is font number 2. Also assume that the
nodes used in the lower (variable-size) part of mem

start in locations 100, 200, etc., as shown; the nodes
used in the upper (one-word) part of mem should

appear in locations 10000, 10001, etc. Make a

diagram that illustrates the exact numeric contents

of every relevant mem word.

9. What will short-display print, when given the

horizontal list inside the larger \hbox in the previ-
ous problem, assuming that font-in-short-display is

initially zero?

10. Suppose the following commands are executed
immediately after rn has initialized itself:

incr (prev-depth);

decr(mode-line);
incr (prev-graf);
show-activities .

What will be shown?

11. What will 'show-eqtb (int-base + 17)' show, after

Tf$ has initialized itself?

12. Suppose rn has been given the following
definitions:

\def\aC\advance\day by l\relax)

\def \gC\global\a)

The effect of this inside rn will be that an

appearance of \a calls

eq-word-define (p, eqtb [p].int + I) ,

and an appearance of \g calls

geq-word-define (p, eqtb [p] .int + 1)

where p = int-base + day-code. Consider now the
following commands:

Each 'C ' calls new-save-level(simp1e-group), and

each '1' calls unsave.

Explain what gets pushed onto and popped

off of the save-stack, and what gets stored in

eqtblp] and xeq-level[p], as the above commands are
executed. What is the final value of \day? (See

The W b o o k . exercise 15.9 and page 301.)

13. Use the notation at the bottom of page 122 in

m: The Program to describe the contents of the

token list corresponding to \ ! after the definition

\def\! !l#2! [{!#I#! ! 2)

has been given, assuming that [, I , and ! have the

respective catcodes 1, 2, and 6, just as C, 1, and #

do. (See exercise 20.7 in The ?&$book.)

14. What is the absolute maximum number of char-

acters that will printed by show-eqtb(every-par-loc),
if the current value of \everypar does not contain

any control sequences? (Hint: The answer ex-

ceeds 40. You may wish to verify this by running

TEX. defining an appropriate worst-case example,

and saying

\tracingrestores=l

\tracingonline=l

C\everyparC))

since this will invoke show-eqtb when \everypar is

restored.)

15. What does INITEX do with the following input

line? (Look closely.)

\catcode"=7 \ " ' (") " ' !

16. Explain the error message you get if you say

\endlinechar='! \error

in plain TEX.

TUGboat, Volume 11 (1990), No. 2 167

17. Fill in the missing macro definition so that the

program

\catcodeC?=\act ive

\def\answerC. . .)
\answer

will produce precisely the following error message

when run with plain TEX:

! Undefined control sequence.

<recently read> How d id t h i s happen?

(This problem is much harder than the others above,
but there are at least three wags to solve it!)

18. Consider what rn will do when it processes
the following text:

{\def\t{\gdef\a##)\catcodeCd=12\tld#2#3{#2)}

\hfuzz=100P\ifdiml2pt=lP\expandafter\a

\expandafter\else\romannumera1888\relax\fi

\showthe\hfuzz \showlists

(Assume that the category codes of plain TJ$ are

being used.)

Determine when the subroutines scan-keyword.

scan-int, and scan-dimen are called as this text

is being read, and explain in general terms what

results those subroutines produce.

19. What is the difference in interpretation, if any,

between the following two TEX commands?

\thickmuskip=-\thickmuskip

\thickmuskip=-\the\thickmuskip

(Assume that plain TFJ is being used.) Explain

why there is or isn't a difference.

20. In what way would TJ~X'S behavior change if

the assignment at the end of 5508 were changed to

'b +- (p = null)'?

21. The initial implementation of w 8 2 had a

much simpler procedure in place of the one now in

5601:

procedure dvi-pop ;

begin if dvi-ptr > 0 then

if dvi-buf [dm-ptr - 11 = push then decr(dvz-ptr)

else dvi-out (pop)

else dvi-out (pop);

end;

(No parameter 1 was necessary.) Why did the

author hang his head in shame one day and change

it to the form it now has?

22. Assign subscripts d, y, and z to the sequence

of integers

2 7 1 8 2 8 1 8 2 8 4 5 9 0 4 5

using the procedure sketched in $604. (This is easy.)

23. Find a short program that will cause the

print-mode subroutine to print 'no mode'. (Do not

assume that the category codes or macros of plain

TEX have been preloaded.) Extra credit will be

given to the person who has the shortest program,

i.e., the fewest tokens, among all correct solutions

submitted.

24. The textbook says in 578 that error might be

called within error within a call of error. but the

recursion cannot go any deeper than this.
Construct a scenario in which error is entered

three times before it has been completed.

25. (The following question was the main problem

on the midterm exam.) Suppose WEB'S conventions

have been changed so that strings are not identified
by their number but rather by their starting position

in the str-pool array. The str-start array is therefore

eliminated.

Strings of length 1 are still represented by their

ASCII code values; all other strings have values

2 128. and they appear in the pool-file just as

before, in increasing order of starting position. The

special code '128' is assumed to terminate each

string.
Thus, for example, if such a WEB program uses

just the three strings "ab", "", and "cd" (in this

order), they will be represented in the corresponding
Pascal code by the respective integers 128, 131.

and 132. The program in this case is expected to

initialize str-pool locations 128-134 to the successive

code values 97, 98, 128, 128, 99. 100, 128.
Such a modification requires lots of changes to

rn. Your job in this problem is to indicate what
those changes should be. However. you needn't

specify a complete change file; just say how you

would modify $38-548, 559, $259, $407, 5464, and
5602 (if these sections need to change at all). The

other places where str-start appears can be changed

in similar ways, and you needn't deal with those.

Some of the specified sections will require new

code; you should supply that code. Other sections

may change only a little bit or not at all; you should

just give the grader sufficient explanation of what
should happen there.

TUGboat, Volume 11 (1990), No. 2

26. Continuing problem 25, discuss briefly whether

or not it would be preferable (a) to store the length
of each string just before the first character, instead

of using '128' just after the last character; or (b) to
eliminate the extra '128' entirely and to save space

by adding 128 to the final character.

27. J . H. Quick (a student) thought he spotted a

bug in $671 and he was all set to collect $40.96

because of programs like this:

\vbox{\moveright lpt\hbox to 2pt{}

\xleaders\lastbox\vskip 3ptl

(He noticed that TEX would give this vbox a width

of 2pt , and he thought that the correct width was

3pt.) However, when he typed \showlists he saw

that the leaders were simply

\xleaders 3.0

.\hbox(0.0+0.0)x2.0

and he noticed with regret the statement

shift-amount (cur-box) +- 0

in $1081.

Explain how $671 would have to be corrected,
if the shzfi-amount of a leader box could be nonzero.

28. When your instructor made up this problem, he said
'\hbadness=-1' so that rn would print out the way each

line of this paragraph was broken. (He sometimes wants to

check line breaks without looking at actual output, when

he's using a terminal that has no display capabilities.) It
turned out that rn typed this:

Loose \hbox (badness 0) in paragraph at lines 11-16

[]\tenrm When your instructor made up this problem, he said

Tight \hbox (badness 3) in paragraph at lines 11-16

\tenrm '\tentt \hbadness=-l\tenrm ' so that T [l X would print out the way each

Tight \hbox (badness 20) in paragraph at lines 11-16

\tenrm line of this paragraph was broken. (He sometimes wants to

Loose \hbox (badness 1) in paragraph at lines 11--16

\tern check line breaks without looking at actual output, when

Loose \hbox (badness 1) in paragraph at lines 11-16

\tenrm he's using a terminal that has no display capabilities.) It

Why wasn't anything shown for the last line of the paragraph?

29. How would the output of TEX look different

if the rebox procedure were changed by delet-

ing the statement 'if type(b) = vlist-node then

b + hpack (b, natural)'? How would the output

look different if the next conditional statement, 'if

(is-char-node (p)) . . . ' were deleted? (Note that

box b might have been formed by char-box .)

30. What spacing does TEX insert between the

characters when it typesets the formulas $x== I$,

$x++I$, and $x, ,I$? Find the places in the

program where these spacing decisions are made.

31. When your instructor made up this problem, he
said '\tracingparagraphs=I1 so that his transcript

file would explain why TEX has broken the para-

graph into lines in a particular way. He also said

'\pretolerance=-1' so that hyphenation would be

tried immediately. The output is shown on the next

page; use it to determine what line breaks would

have been found by a simpler algorithm that breaks

one line at a time. (The simpler algorithm finds the
breakpoint that yields fewest demerits on the first

line, then chooses it and starts over again.)

32. Play through the algorithms in parts 42 and
43, to figure out the contents of trie-op, trie-char,

trie-link , hyf-distance , hyf-num, and hyf-next after

the statement

\patterns{albc 2bcd3 ablcd}

has been processed. Then execute the algorithm

of $923, to see how TEX uses this efficient trie

structure to set the values of hyf when the word

aabcd is hyphenated. [The value of hn will be 5,
and the values of hc[l . .5] will be (96,96,97,98,99),

respectively, when $923 begins.]

TUGboat, Volume 11 (1990), No. 2

% This is the paragraph-trace output referred to in Problem 31:
Cl\tenrm When your in-struc-tor made up this prob-lem, he

@ via @@O b=O p=O d=100

@@I: line 1.2 t=lOO -> @@O
said '\tentt \tracingparagraphs=l\tenrm ' so that his tran-script
@ via @@I b=4 p=O d=196

@@2: line 2.2 t=296 -> @@I
file would ex-plain why T U X has bro-ken the para-
@\discretionary via @@2 b=175 p=50 d=46725

@@3: line 3.0- t=47021 -> @@2

graph
@ via @@2 b=25 p=O d=1225

@@4: line 3.3 t=1521 -> @@2
into lines in a par-tic-u-lar way. He also said

@ via @@3 b=69 p=O d=6241

@@5: line 4.1 t=53262 -> @@3
'\tentt \pretolerance=-l\tenrm ' so that hy-phen-ation would be
@ via @@5 b=43 p=O d=2809

@@6: line 5.1 t=56071 -> @@5
tried im-me-di-ately. The out-put is shown on the next

@ via @@6 b=O p=O d=100

@@7: line 6.2 t=56171 -> @@6
page; use it to de-ter-mine what line breaks would

@ via @@7 b=153 p=O d=36569

@@8: line 7.0 t=92740 -> @@7
have - -

@ via @@7 b=34 p=O d=1936

@@9: line 7.3 t=58107 -> @@7
been found by a sim-pler al-go-rithm that breaks

@ via @@8 b=l p=O d=10121

@@lo: line 8.2 t=102861 -> @@8
one

@ via @@9 b=15 p=O d=10625

@@11: line 8.1 t=68732 -> 0629
line at a time. (The sim-pler al-go-rithm finds

@ via @@I0 b=164 p=O d=40276

@@12: line 9.0 t=143137 -> @@I0
the

@ via @@I0 b=O p=O d=100

@ via @@I1 b=192 p=O d=40804

@@13: line 9.0 t=109536 -> @@I1
@@14: line 9.2 t=102961 -> @@I0
break-point that yields fewest de-mer-its on the

@ via @@I2 b=174 p=O d=33856

@@15: line 10.0 t=176993 -> @@I2

first

@ via @@I2 b=41 p=O d=12601

@ via @@I3 b=75 p=O d=7225

@ via @@I4 b=75 p=O d=7225

@@16: line 10.1 t=110186 -> @@I4

line, then chooses it and starts over again.)

@\par via @@I5 b=O p=-10000 d=10100

@\par via @@I6 b=O p=-10000 d-100

@@17: line 11.2- t=110286 -> @@I6

TUGboat, Volume 11 (1990), No. 2

33. The save-stack is normally empty when a rn
program stops. But if, say, the user's input has

an extra '{' (or a missing ' I1) , rn will print the

warning message

(\end occurred in s ide a group a t l e v e l I)

(see $1335).

Explain in detail how to change rn so that

such warning messages will be more explicit. For

example, if the source program has an unmatched

'(' on line 6 and an unmatched '\begingroup'

on line 25, your modified 7&X should give two
warnings:

(\end occurred when \begingroup

on l i n e 25 was incomplete)
(\end occurred when { on l i n e 6

was incomplete)

You may assume that simple-group and

semi~simple~group are the only group codes present

on save-stack when 51335 is encountered; if other

group codes are present, your program should call
confusion.

34. (The following question is the most difficult yet

most important of the entire collection. It was the

main problem on the take-home final exam.)

The purpose of this problem is to extend rn
so that it will sell better in China and Japan.

The extended program, called m , allows each

font to contain up to 65536 characters. Each

extended character is represented by two values, its

'extension' x and its 'code' c, where both x and c
lie between 0 and 255 inclusive. Characters with

the same 'c' but different 'x' correspond to different

graphics; but they have the same width, height.

depth, and italic correction.

is identical to rn except that it has one
new primitive command: \xchar. If \xchar occurs

in vertical mode, it begins a new paragraph; i.e.,

it's a (horizontal command) as on p. 283 of The

T~Xbook. If \xchar occurs in horizontal mode it
should be followed by a (number) between 0 and

65535; this number can be converted to the form

2562 + c, where 0 5 x, c < 256. The corresponding
extended character from the current font will be

appended to the current horizontal list, and the

space factor will be set to 1000. (If x = 0, the effect

of \xchar is something like the effect of \char,

except that \xchar disables ligatures and kerns and

it doesn't do anything special to the space factor.

Moreover, no penalty is inserted after an \xchar

that happens to be the \hyphenchar of the current
font.) A word containing an extended character will

not be hyphenated. The \xchar command should

not occur in math mode.

Inside m, an extended character (x, c) in

font f is represented by two consecutive char-node
items p and q, where we have font(p) = null-font,

character (p) = qi (x), link (p) = q , font (q) = f , and

character(q) = qi(c). This two-word representation

is used even when x = 0.
rn typesets an extended character by spec-

ifying character number 2562 + c in the D V I file.

(See the set2 command in $585.)
If m is run with the macros of plain rn.

and if the user types ' \ t r ac inga l l \xchar600
\showlists ' . the output of 7)QX will include

{\xchar)
{horizontal mode: \xchar)

(\showlists)

hor izonta l mode entered a t l i n e 0

\hbox(0.0+0.0)x20.0
\tenrm \xchar1'258

spacef ac tor 1000

(since 600 is "258 in hexadecimal notation).

Your job is to explain in detail all changes to

that are necessary to convert it to rn.
[Note: A properly designed extension would

also include the primitive operator \xchardef,

analogous to \chardef and \mathdef, because
a language should be 'orthogonally complete'. How-

ever. this additional extension has not been included

as part of problem 34, because it presents no spe-

cial difficulties. Anybody who can figure out how

to implement \xchar can certainly also handle

\xchardef .]

35. The first edition of m: The Program sug-

gested that extended characters could be repre-

sented with the following convention: The first of

two consecutive char-node items was to contain

the font code and a character code from which
the dimensions could be computed as usual: the

second char-node was a halfword giving the actual
character number to be typeset. Fonts were di-

vided into two types, based on characteristics of

their TFM headers; 'oriental' fonts always used this
two-word representation, other fonts always used

the one-word representation.

Explain why the method suggested in problem

34 is better than this. (There are at least two

reasons.)

0 Donald E. Knuth
Department of Computer Science
Stanford University
Stanford, CA 94305

