
TUGboat, Volume 11 (1990), No. 2

-

A New Implementation of the BTjijX
verbatim and verbatim* Environments*

Rainer schopf t

Abstract

This style option reimplements the I 4 w verbatim

and verbatim* environments. In addition it pro-

vides a comment environment that skips any com-

mands or text between \begin{comment) and the

next \end{comment). It also contains a redefini-

tion of I 4 w ' s \verb command to better detect the

omission of the closing delimiter.

1 Usage notes

V W ' s verbatim and verbatim* environments

have a few features that may give rise to problems.

These are:

0 Since has to read all the text between the

\begin{verbatim) and the \end{verbatiml

before it can output anything, long verbatim

listings may overflow W ' s memory.

0 Due to the method used to detect the closing

\end{verbatim) (i.e. macro parameter delim-

iting) you cannot leave spaces between the \end

token and {verbatim).

Whereas the last of these points can be considered

only a minor nuisance the other one is a real limita-

tion.

This style file contains a reimplementation of

the verbatim and verbatim* environments which

overcomes these restrictions. There is, however,

one incompatibility between the old and the new

implementations of these environments: the old

version would treat text on the same line as the

\end{verbatim} command as if it were on a line

by itself. This new version will simply ignore

it.l It will. however, issue a warning message of the

form

LaTeX warning: Characters dropped

a f t e r \end{verbatlm*)!

* This file has version number v1.4a dated

90/04/04. The documentation was last revised on

90/04/04.

!Many thanks to Chris Rowley from The Open

University, UK, for looking this over, making a lot of

useful suggestions, and discovering bugs. And many

thanks to all the beta testers who tried this style file

out.
This is the price one has to pay for the removal

of the old verbatim environment's size limitations.

This is not a real problem since this text can easily

be put on the next line without affecting the output.

This new implementation also solves the sec-

ond problem mentioned above: it is possible to leave

spaces (but not end of line) between the \end and

the {verbatim) or {verbatim*):

\begin {verbatim*}

t e s t

t e s t

\end {verbatim*}

Additionally we introduce a comment envi-

ronment, with the effect that the text between

\begin{comment) and \end{comment) is simply ig-

nored, regardless of what it looks like. At first sight

this seems to be quite different from the purpose

of verbatim listing. but actually these two concepts

turn out to be very similar. Both rely on the fact

that the text between \begin{. . .) and \end{. . . I
is read by TEX without interpreting any commands

or special characters. The remaining difference be-

tween verbatim and comment is only that the text

is to be typeset in the former case and to be thrown

away in the latter.

\verbat iminput is a command with one argu-

ment that inputs a file verbatim, i.e. the command

verbat iminputixx. yy) has the same effect as

\begin{verbatim)

(Contents of the file xx. yy)

\end{verbat i m)

This command has also a *-variant that prints

spaces as ,.

2 Interfaces for style file designers

The verbatim environment of version 2.09

does not offer a good interface to programmers. In

contrast, this style file provides a simple mechanism

to implement similar features, the comment environ-

ment provided here being an example of what can

be done and how.

2.1 Simple examples

It is now possible to use the verbatim environment

to define environments of your own. E.g.,

can be used afterwards like the verbatim environ-

ment, i.e.

\begin {myverbatim}

t e s t

t e s t

\end Cmyverbatim)

TUGboat, Volume 11 (1990), No. 2 285

Another way to use it is to write

and from that point on environment f oo is the same

as the comment environment, i.e. everything inside

its body is ignored.

You may also add special commands after the

\verbatim macro is invoked, e.g.

\newenvironment{myverbatim)%

~\verbatim\myspecialverbatimsetup)%

{\endverbat im)

though you may want to learn about the hook

\everyQverbatim at this point. However, there are

still a number of restrictions:

1. You must not use \begin(verbatim) inside a

definition, e.g.

\newenvironment(myverbatim3%

I\endgraf\noindentuMYVERBATIM:%

,,\endgraf\begin{verbatim))%

(\end(verbatim))

If you try this example, 'l&X will report a

"runaway argument" error. More generally,

it is not possible to use \begin(verbatim). . .
\end(verbatim) or the related environments in

the definition of the new environment.

2. You cannot use the verbatim environment in-

side user defined commands: e.g..

\newcommand [ll (\verbatimfile)%
(\begin(verbatim)%

,,\input (#I)%

,,\endCverbatirn))

does not work; nor does

\newcommand[1] (\verbatimfile)%

{\verbatim\input(#l)\endverbatim)

3. The name of the newly defined environment

must not contain characters with category code

other than 11 (letter) or 12 (other), or this will

not work.

2.2 The interfaces

Let us start with the simple things. Sometimes it

may be necessary to use a special typeface for your

verbatim text, or perhaps the usual computer mod-

ern typewriter shape in a reduced size.

You may select this by redefining the macro

\verbatimQfont. This macro is executed at the

beginning of every verbatim text to select the font

shape. Do not use it for other purposes; if you find

yourself abusing this you may want to read about

the \everyQverbatim hook below.

Per default. \verbatimQf ont switches to the

typewriter font and disables the ? ' and ! ' ligatures.

There is a hook (i.e. a token register) called

\everyQverbatim whose contents are inserted into

m ' s mouth just before every verbatim text. Please

use the \addtoQhook macro to add something to this

hook. It is used as follows:

\addtoQhook(name of the hook)

((commands to be added))

After all specific setup. like switching of cate-

gory codes, has been done, the \verbatim@start

macro is called. This starts the main loop of the

scanning mechanism implemented here. Any other

environment that wants to make use of this feature

should call this macro as its last action.

These are the things that concern the start of a

verbatim environment. Once this (and other) setup

has been done, the code in this style file reads and

processes characters from the input stream in the

following way:

1. Before it starts to read the first character of an

input line the macro \verbatimQstartline is

called.

2. After some characters have been read, the

macro \verbatimQaddtoline is called with

these characters as its only argument. This may

happen several times per live (when an \end

command is present on the line in question).

3. When the end of the line is reached, the macro

\verbat imQprocessline is called to process

the characters that \verbatimQaddtoline has

accumulated.

4. Finally, there is the macro \verbatimQf inish

that is called just before the environment is

ended by a call to the \end macro.

To make this clear consider the standard

verbatim environment. In this case the three

macros above are defined as follows:

1. \verbatimQstartline clears the character

buffer (a token register).

2. \verbat imQaddt oline adds its argument to

the character buffer.

3. \verbatimQprocessline typesets the charac-

ters accumulated in the buffer.

With this it is very simple to implement the comment

environment: in this case \verbatimQstartline

and \verbatim@processline are no-ops whereas

\verbatim@addtoline discards its argument.

Another possibility is to define a variant of the

verbatim environment that prints line numbers in

the left margin. Assume that this would be done by

a counter called VerbatimLineNo. Assuming that

this counter was initialized properly by the environ-

ment, \verbatimQprocessline would be defined in

this case as

TUGboat, Volume 11 (1990), No. 2

As a final nontrivial example we describe

the definition of an environment called

verbatimwrite. It writes all text in its

body to a file the name of which it is

given as an argument. We assume that

a stream number called \verbatimQout

has already been reserved by means of

the \newwrite macro.

Let's begin with the definition of the

macro \verbat imwrite.

First we call \Qbsphack so that this envi-

ronment does not influence the spacing.

Then we open the file and set the cate-

gory codes of all special characters:

The default definitions of the macros

are also used in this environment. Only

the macro \verbat imQprocessline has

to be changed before \verbatimQstart

is called:

The definition of \endverbatimwrite is

very simple: we close the stream and call

\Qesphack to get the spacing right.

3 The implementation

We use a mechanism similar to the one implemented for the \comment.. . \endcomment
macro in A M S W : We input one line at a time and check if it contains the \end{. . . I
tokens. Then we can decide whether we have reached the end of the verbatim text,

or must continue.

As always we begin by identifying the latest version of this file on the VDU and in

the transcript file.

1 \typeoutCStyle-Option: 'verbatim'

2 \f ileversion \space <\f iledate> (RmS)}

3 \typeout{English Documentation

4 \@spaces \@spaces \space <\docdate> (RmS))

3.1 Preliminaries

We begin by defining a macro that adds tokens to a hook. The first argument

supposed to be a token register, the second consists of arbitrary text.

5 \def\addto@hook#l#2{#l\expandafter{\the#1#2l}

The hook (i.e. token register) \everyQverbatim is initialized to (empty).

6 \neutoks\every@verbatim

7 \every@verbatim={}

\@makeother takes as argument a character and changes its category code to 1 2

(other).

The macro \Qvobeyspaces causes spaces in the input to be printed as spaces in the

output.

TUGboat. Volume 11 (1990), No. 2 287

\verbatim@startline

\verbat imQaddt oline

\verbatimQprocessline

\verbat imQf inish

\verbat imQf ont

The macro \Qxobeysp produces exactly one space in the output, protected against

breaking just before it. (\QM is an abbreviation for the number 10000.)

We use a newly defined token register called \verbatim@line that will be used as the

character buffer.

The following four macros are defined globally in a way suitable for the verbatim and

verbatim* environments.

\verba t imQstar t l ine initializes processing of a line by emptying the character buffer

(\verbat im@line).

\verbatimQaddtoline adds the tokens in its argument to our buffer register

\verbatimQline without expanding them.

16 \def \verbatimQaddtoline#l(%

17 \verbatimQline\expandafter{\the\verbatimQline#l)}

Processing a line inside a verbatim or verbatim* environment means printing it.

Ending the line means that we have to begin a new paragraph. We use \par for this

purpose. Note that \par is redefined in \@verbatim to force into horizontal mode

and to insert an empty box so that empty lines in the input do appear in the output.

As a default, \verbatimQf i n i s h processes the remaining characters. When this macro

is called we are facing the following problem: when the \end{verbatim) command

is encountered \verbatimQprocessline is called to process the characters preceding

the command on the same line. If there are none, an empty line would be output if

we did not check for this case.

If the line is empty \ the\verbatimQline expands to nothing. To test this we use

a trick similar to that on p. 376 of the m b o o k , but with $. . . $ instead of the !

tokens. These tokens can never have the same category code as those appearing in the

token register \verbatimQline where $ characters were read with category code 1 2

(other). Note that \ i f c a t expands the following tokens so that \ the\verbatim@line

is replaced by the accumulated characters

19 \def\verbatimQfinish{\ifcat$\the\verbatimQline$\else

20 \verbatim~processline\f i)

3.2 The verbatim and verbatim* environments

We start by defining the macro \verbatimQf ont that is to select the font and to set

font-dependent parameters. For the default computer modern typewriter font (cmtt)

we have to avoid the ligatures i and i, (as produced by ! ' and ?'). We do this by

making the backquote ' character active and defining it to insert an explicit kern

before the backquote character. While the backquote character is active we cannot

use it in a construction like \ ca t code ' (char)=(number). Instead we use the ASCII
code of this character (96).

TUGboat, Volume 11 (1990), No. 2

\@verbatim The macro \@verbatim sets up things properly. First of all, the tokens of the

\everyQverbatim hook are inserted. Then a t r i v l i s t environment is started and its

first \ i tem command inserted. Each line of the verbatim or verbatim* environment

will be treated as a separate paragraph.

The paragraph parameters are set appropriately: left and right margins, paragraph

indentation, the glue to fill the last line and the vertical space between paragraphs.

This has to be zero since we do not want to add extra space between lines.

There's one point to make here: the l i s t environment uses W ' s \parshape primitive

to get a special indentation for the first line of the list. If the list begins with a

verbatim environment this \parshape is still in effect. Therefore we have to reset

this internal parameter explicitly. We could do this by assigning 0 to \parshape.

However, there is a simpler way to achieve this: we simply tell to start a new

paragraph. As is explained on p. 103 of the m b o o k , this resets \parshape to zero.

We now ensure that \par has the correct definition, namely to force into horizon-

tal mode and to include an empty box. This is to ensure that empty lines do appear

in the output.

30 \def \par{\leavevmode\null\Qmpar}%

Now we call \obeylines to make the end of line character active,

switch to the font to be used,

32 \ve rba t imQf ont

and change the category code of all special characters to 12 (other).

\verbat im Now we define the toplevel macros. \verbatim is slightly changed: after setting up

\verbatim* things properly it calls \verbatirn@start.

\verbatim* is defined accordingly.

\endverbatim To end the verbatim and verbatim* environments it is only necessary to finish the

\endverbatim* t r i v l i s t environment started in \@verbatim.

3.3 The comment environment

\comment The \comment macro is similar to \verbatim*. However, we do not need to switch

\endcomment fonts or set special formatting parameters such as \parindent or \parskip. We need

only set the category code of all special characters to 12 (other) and that of ^-M (the

end of line character) to 13 (active). The latter is needed for macro parameter delimiter

matching in the internal macros defined below. In contrast to the default definitions

used by the \verbatim and \verbatim* macros, we define \verbatimQaddtoline to

throw away its argument and \verbatim@processline, \verbat im@start l ine, and

TUGboat, Volume 11 (1990), No. 2 289

\verbatimQfinish to act as no-ops. Then we call \verbatim@. But the first thing

we do is to call \Qbsphack so that this environment has no influence whatsoever upon

the spacing.

38 \def\comment{\Qbsphack

39 \let\do\Qmakeother\dospecials\catcode1\~~M\active

40 \let\verbatimQstartline\relax

4 1 \let\verbatimQaddtoline\Qgobble

42 \let\verbatimQprocessline\relax

43 \let\verbatimQfinish\relax

44 \verbat imQ)

\endcomment is very simple: it only calls \@esphack to take care of the spacing.

The \end macro closes the group and therefore takes care of restoring everything we

changed.

3.4 The main loop

Here comes the tricky part: During the definition of the macros we need to use the

special characters \, C, and 3 not only with their normal category codes, but also with

category code 12 (other). We achieve this by the following trick: first we tell TEX that

\, C, and are the lowercase versions of ! , [, and I . Then we replace every occurrence
of \, C , and) that should be read with category code 12 by !, [, and 1 , respectively,

and give the whole list of tokens to \lowercase, knowing that category codes are not

altered by \lowercase!

But first we have ensure that ! , [, and 1 themselves have the correct category code! To

allow special settings of these codes we hide their setting in the macro \vrbQcat codes.

If it is already defined our new definition is skipped.

This allows the use of this code for applications where other category codes are in

effect.

We start a group to keep the category code changes local.

We also need the end-of-line character - - M , as an active character. If we were to
simply write \catcode'\--M=\active then we would get an unwanted active end of

line character at the end of every line of the following macro definitions. Therefore

we use the same trick as above: we write a tilde " instead of - -M and pretend that

the latter is the lowercase variant of the former. Thus we have to ensure now that the

tilde character has category code 13 (active).

The use of the \lowercase primitive leads to one problem: the uppercase character

'C' needs to be used in the code below and its case must be preserved. So we add the

command:

53 \lccode'\C='\C

Now we start the token list passed to \lowercase.

54 \lowercase{%

Since this is done in a group all macro definitions are executed globally.

290 TUGboat, Volume 11 (1990), No. 2

\verbatim@start The purpose of \verbat im@start is to check whether there are any characters on

the same line as the \begin{verbatim) and to pretend that they were on a line by

themselves. On the other hand, if there are no characters remaining on the current

line we shall just find an end of line character. \verbat im@start performs its task by

first grabbing the following character (its argument). This argument is then compared

to an active a-M, the end of line character.

If this is true we transfer control to \verbatim@ to process the next line. We use

\next as the macro which will continue the work.

58 \let\next \verbat imQ

Otherwise, we define \next to expand to a call to \verbatim@ followed by the character

just read so that it is reinserted into the text. This means that those characters

remaining on this line are handled as if they formed a line by themselves.

Finally we call \next.

60 \next}%

\verbatim@ The three macros \verbatim@, \verbatim@@; and \verbatim@@@ form the "main

loop" of the verbatim environment. The purpose of \verbatim@ is to read exactly

one line of input. \verbatim@@ and \verbatim@@@ work together to find out whether

the four characters \end (all with category code 12 (other)) occur in that line. If

so, \verbatim@@@ will call \verbatim@test to check whether this \end is part of

\end{verbatim) and will terminate the environment if this is the case. Otherwise

we continue as if nothing had happened. So let's have a look at the definition of

\verbatim@:

61 \gdef\verbatim@#l-(\verbatim@@#l!end\@nil}%

Note that the ! character will have been replaced by a \ with category code 1 2 (other)

by the \lowercase primitive governing this code before the definition of this macro

actually takes place. That means that it takes the line, puts \end (four character

tokens) and \ @ n i l (one control sequence token) as a delimiter behind it, and then

calls \verbat im@@.

\verbatim@@ \verbatim@@ takes everything up to the next occurrence of the four characters \end

as its argument.

62 \gdef\verbatim@@#l!endC%

That means: if they do not occur in the original line, then argument #1 is the whole

input line, and \@ni l is the next token to be processed. However, if the four characters

\end are part of the original line, then #1 consists of the characters in front of \end,

and the next token is the following character (always remember that the line was

lengthened by five tokens). Whatever #I may be, it is verbatim text, so #1 is added

to the line currently built.

The next token in the input stream is of special interest to us. Therefore \f u t u r e l e t

defines \next to be equal to it before calling \verbatim@@@.

\verbatim@@@ \verbatim@@@ will now read the rest of the tokens on the current line, up to the final

\ @ n i l token.

65 \gdef \verbatim@@@#l\@nil{%

TUGboat, Volume 11 (1990), No. 2

If the first of the above two cases occurred, i.e. no \end characters were on that line,

#1 is empty and \next is equal to \@ni l . This is easily checked.

If so, this was a simple line. We finish it by processing the line we accumulated so far.

Then we prepare to read the next line.

67 \verbatim@processline

68 \verbatim@st art line

69 \let\next\verbatim@

Otherwise we have to check what follows these \end tokens.

Before we continue, it's a good idea to stop for a moment and remember where we

are: We have just read the four character tokens \end and must now check whether

the name of the environment (surrounded by braces) follows. To this end we define a

macro called \@ternpa that reads exactly one character and decides what to do next.

This macro should do the following: skip spaces until it encounters either a left brace

or the end of the line. But it is important to remember which characters are skipped.

The \end(optional spaces){ characters may be part of the verbatim text, i.e, these

characters must be printed.

Assume for example that the current line contains

As we shall soon see, the scanning mechanism implemented here will not find out that

this is text to be printed until it has read the right brace. Therefore we need a way to

accumulate the characters read so that we can reinsert them if necessary. The token

register \@ternptokena is used for this purpose.

Before we do this we have to get rid of the superfluous \end tokens at the end of

the line. To this end we define a temporary macro whose argument is delimited by

\end\@nil (four character tokens and one control sequence token) and use it on the

rest of the line, after appending a \ @ n i l token to it. This token can never appear in

#I. We use the following definition of \@ternpa to store the rest of the line (after the

first \end) in token register \ toks@ which we shall use again in a moment.

We mentioned already that we use token register \@ternptokena to remember the

characters we skip, in case we need them again. We initialize this with the \end we

have thrown away in the call to \@ternpa.

We shall now call \verbat imQtest to process the characters remaining on the current

line. But wait a moment: we cannot simply call this macro since we have already

read the whole line. We stored its characters in token register \toks@. Therefore we

use the following \edef to insert them again after the \verbatirn@test token. A --M

character is appended to denote the end of the line.

That's almost all, but we still have to now call \next to do the work.

75 \fi \next)%

\verbatbatest We define \verbat im@test to investigate every token in turn.

TUGboat, Volume 11 (1990), No. 2

First of all we set \next equal to \verbatim@test in case this macro must call itself

recursively in order to skip spaces.

We have to distinguish four cases:

1. The next token is a --M, i.e. we reached the end of the line. That means that

nothing special was found. Note that we use \if for the following comparisons

so that the category code of the characters is irrelevant.

We add the characters accumulated in token register \@temptokena to the current

line. Since \verbatim@addtoline does not expand its argument, we have to do

the expansion at this point. Then we \let \next equal to \verbatim@ to prepare

to read the next line.

2. A space character follows. This is allowed, so we add it to \@temptokena and
continue.

An open brace follows. This is the most interesting case. We must now collect

characters until we read the closing brace and check whether they form the envi-

ronment name. This will be done by \verbatim@testend, so here we let \next

equal this macro. Again we will process the rest of the line, character by charac-

ter. The characters forming the name of the environment will be accumulated in

\@tempt. We initialize this macro to expand to nothing.

Note that the [character will be a C when this macro is defined.

4. Any other character means that the \end was part of the verbatim text. Add the

characters to the current line and prepare to call \verbatim@ to process the rest

of the line.

89 \else

90 \expandafter\verbatimQaddtoline

91 \expandafter{\the\@temptokena)%

92 \def\next{\verbatimQ#1)%

93 \f i\f i\f i

The last thing this macro does is to call \next to continue processing.

94 \next}%

\verbatim@testend \verbat imatestend is called when \end(optional spaces){ was seen. Its task is to scan

everything up to the next 1 and to call \verbatim@@testend. If no 1 is found it must

reinsert the characters it read and return to \verbatim@. The following definition is

similar to that of \verbatim@test: it takes the next character and decides what to
do.

Again, we have four cases:

TUGboat, Volume 11 (1990), No. 2 293

1. --M: As no 3 is found in the current line, add the characters to the buffer. To

avoid a complicated construction for expanding \Qtemptokena and \Qtempc we

do it in two steps. Then we continue with \verbat imQ to process the next line.

2. 3: Call \verbatimQQtestend to check if this is the right environment name.

3. \: This character must not occur in the name of an environment. Thus we

stop collecting characters. In principle, the same argument would apply to

other characters as well, e.g., {. However, \ is a special case, since it may

be the first character of \end. This means that we have to look again for

\end((envzronrnent name)). Note that we prefixed the ! by a \noexpand primi-

tive, to protect ourselves against it being an active character.

4. Any other character: collect it and continue. We cannot use \edef to define

\Qtempc since its replacement text might contain active character tokens.

As before, the macro ends by calling itself, to process the next character if appropriate.

114 \next)%

\verbatimQ@testend Unlike the previous macros \verbatimQQtestend is simple: it has only to check if the

\end{. . . 1 matches the corresponding \begin{. . . 3.

We use \next again to define the things that are to be done. Remember that the

name of the current environment is held in \@currenvir, the characters accumulated

by \verbatimQtestend are in \Qtempc. So we simply compare these and prepare

to execute \end{(current environment)) macro if they match. Before we do this we

call \verbatimQfinish to process the last line. We define \next via \edef so that

\Qcurrenvir is replaced by its expansion. Therefore we need \noexpand to inhibit

the expansion of \end at this point.

Without this trick the \end command would not be able to correctly check whether its

argument matches the name of the current environment and you'd get an interesting

J3m error message such as:

! \begin{verbatim*) ended by \end{verbatim*).

TUGboat, Volume 11 (1990), No. 2

But what do we do with the rest of the characters, those that remain on that line?

We call \verbat imarescan to take care of that. Its first argument is the name of the

environment just ended, in case we need it again. \verbatim@rescan takes the list

of characters to be reprocessed as its second argument. (This token list was inserted

after the current macro by \verbat im@Q@.) Since we are still in an \edef we protect

it by means of\noexpand.

If the names do not match, we reinsert everything read up to now and prepare to call

\verbatim@ to process the rest of the line.

Finally we call \next.

\verbatim@rescan In principle \verbatimQrescan could be used to analyse the characters remaining

after the \end(. . .) command and pretend that these were read "properly", assuming

"standard" category codes are in force.2 But this is not always possible (when there

are unmatched curly braces in the rest of the line). Besides, we think that this is not

worth the effort: After a verbatim or verbatim* environment a new line in the output

is begun anyway, and an \end(comment) can easily be put on a line by itself. So there

is no reason why there should be any text here. For the benefit of the user who did

put something there (a comment, perhaps) we simply issue a warning and drop them.

The method of testing is explained in Appendix D, p. 376 of the m b o o k . We use ^ - M

instead of the ! character used there since this is a character that cannot appear in #I.

The two \noexpand primitives are necessary to avoid expansion of active characters

and macros.

One extra subtlety should be noted here: remember that the token list we are currently

building will first be processed by the \lowercase primitive before TEX carries out

the definitions. This means that the 'C' character in the argument to the \@warning

macro must be protected against being changed to 'c'. That's the reason why we

added the \lccodel \C= ' \C assignment above. We can now finish the argument to

\lowercase as well as the group in which the category codes were changed.

128 \gdef\verbatim@rescan#l#2-I\if\noexpand-\noexpand#2-\else

129 \@uarning{Characters dropped after '\string\end(#l)')\fi))
130 \endgroup

3.5 The \verbatiminput command

\verbatiminput \verbatiminput first starts a group to keep font and category changes local.

The right sequence of actions is crucial here. First we must check if a star follows.

Then we must read the argument (the file name). Finally we must set up everything

to read the contents of the file verbatim. Therefore we must not start by calling

\@verbatim to change font and the category code of characters. Instead we call one

Remember that they were all read with category codes 11 (letter) and 1 2 (other)

so that control sequences are not recognized as such.

TUGboat, Volume 11 (1990)' No. 2

of the macros \sverbatim@input or \verbatimOinput, depending on whether a star

follows.

132 \Qifstar\sverbatimQinput\verbatimQinput)

\sverbatim@input reads the file name argument and sets up everything as in the

\verbatim macro. Then it reads in the file, finishes off the t r i v l i s t environment

started by \@verbatim and closes the group opened in \verbatiminput. This restores

everything to its normal settings.

\verbat imainput is nearly the same; it additionally calls \f renchspacing and

\@vobeyspaces (as in \verbatim and \verb).

3.6 Redefinition of the \verb command.

The implementation here has the following advantage over that in the original U r n :
it will not accept that the end of the input line is reached before the verbatim text

has ended. Instead, it will end the verbatim text and generate an error message.

We need special category codes during the definition: the end of line character (- 7 4)

must be an active character. We do this in the same way as above:

We use here \verbatimQfont rather than switching directly to \tt.

142 \verbat imQf ont

Now we make the end of line character active and define it to restore everything back

to normal and to signal an error.

143 \def-{\endgroup\Qlatexerr(\string\verb\space command ended by

144 end of line.)\Qehc)%

The rest is copied from l a t e x . t e x where we have replaced one macro (\@verb) by its

expansion.

\@sverb gains control when we are ready to look for the delimiting character. It

reads it and defines this character to be equivalent to the \endgroup primitive. 1.e.

it will restore everything to normal when it occurs for the second time. But this is

not enough: if the first character of \verb's argument is a space and if a line break

occurs at this point the space will still disappear. To avoid this we include an empty

\hboxC) at the beginning.

TUGboat, Volume 11 (1990), No. 2

Index

The italic numbers denote the lines where the corresponding entry is described, num-

bers underlined point to the definition, all others indicate the places where it is used.

Symbols

\@makeother . - 8

. \@sverb 148

. \@verbat im - 25

\Qvobeyspaces - 9

\Qxobeysp . - 13

v
\verb . - 138

\verbatim 34 - .
\verbatim* 34 -
\verbatim@ - 61

\verbat im@Q - 62

\verbatim@@@ - 65

\verbat im@@testend - 115

\verbat imaaddtoline - 15

\verbatimQf i n i s h - 19

\verbat im@f ont 21

\verbat im@input 135
\verbat imaline - 14

\verbat im@processl ine 15

\verbatim@rescan 128
\ve rba t im@star t - 55

\verbat i m a s t a r t l i n e - 15

\verbat i m @ t e s t - 76

\verbat imQtestend - 95

\verbat iminput 131

o Rainer Schopf
Institut fiir Theoretische Physik
der Universitat Heidelberg
Philosophenweg 16

D-6900 Heidelberg
Federal Republic of Germany

