
TUGboat, Volume 11 (1990), No. 2 245

Mainly, though, these macros were written just

as a challenge. I learned quite a lot about TEX and

needed some w n i q u e s I'd never seen before. It

was also quite pleasing to see that Q X code can

be formally verified, albeit in a rather noddy way.

Without some sort of abstract view of lists, these

T@ macros could not have been written.

8 Acknowledgements

Thanks to Jeremy Gibbons for letting me bounce

ideas off him and spotting the duff ones, to Darnian

Cugley for saying "Do you really think is meant

to do this?", and to the Problem Solving Club for

hearing me out. This work was sponsored by the Sci-

ence and Engineering Research Council and Hewlett

Packard.

o Alan Jeffrey
Programming Research Group
Oxford University
11 Keble Road
Oxford OX1 3QD
A1an.JeffreyQuk.ac.oxford.prg

A Nestable Verbatim Mode

Philip Taylor

A few months ago, Sebastian Rahtz asked me if

I could make some changes to the verbatim code

which he was currently using, and sent me the

source. I found it so opaque that I decided to write

my own, and the following evolved over a period

of a couple of weeks. I would like to acknowledge

my debt to Sebastian, and also to Chris Rowley,

without whose helpful comments and criticism the

code could never have evolved. Of course, the code

is now ten times as opaque as that originally used

by Sebastian, but at least I understand it (on a

good day, when the moon is the seventh house, and

Jupiter \ h a l i p s with Mars).

The idea is as follows: having said

\ input verbatim

at the beginning of one's document, one invokes

verbatim mode by

\verbatim (char)

What follows can then contain any character, with

the single exception of (char), and all such text will

be copied verbatim, with leading spaces retained

but invisible, and all embedded spaces retained

and shewn. If (char) is encountered, 'TQX enters

a new inner group (the verbatim environment is

itself a group), within which the preceding meaning

(i.e. \catcode) of all characters is reinstated. This

new inner group continues typesetting in the normal

(non-verbatim) manner until a further (char) is en-

countered, whereupon it reverts to verbatim mode;

the inner 'normal' mode can itself be interrupted

by a further

\verbatim (char)

where (char) can be the same or a different escape

character. There is no theoretical limit on the level

of nesting, but TEX implementations will invariably

run out of space (usually save-stack space) if too

many levels are attempted.

To end verbatim mode, one enters inner 'nor-

mal' mode through the escape character and then

says \mitabrev. Note that this is not a reserved

string, but simply a macro which expands to {\end-

group \endgroup}; any other name can be chosen

if one finds "\mitabrev" unappealing. Thus, at the

outermost level, the call and end to \verbatim look

like:

\verbatim (char)

(char) \mitabrev

Finally, a mechanism is provided for listing

arbitrary files in verbatim mode. If, while in inner

'normal' mode. one says

\Af terGroup ((any balanced text))

(note the case of \AfterGroup), the (balanced text)

will be re-inserted with its original catcodes imme-

diately after the closing (char) which terminates

inner 'normal' mode. Thus it will not itself be listed

verbatzm. but will be elaborated according to m ' s

normal conventions. Thus if one says

\AfterGroup {\input (filename))

the contents of the file will be listed in verbatim

mode. For example, to list this file itself, one can

say

\verbatim I
I \AfterGroup (\input verbatim.tex1 I
I \mitabrev

There remains an anomaly at present: "\"

cannot form the escape-character as it will au-

tomatically form a (control sequence) with the

following character(s) when called with

\verbatim \

I will endeavour to rectify this deficiency in a future

release.

TUGboat, Volume 11 (1990), No. 2

The source of Verbatim . TeX follows.

we use commercial-at as a letter throughout;

and introduce synonyms for the catco codes for

(letter) and (other);

a loop-counter;

this will hold the character-code of the

escape character;

set (true) if you want to watch the

finite-state automaton at work;

set (true) if you want to see leading spaces

shewn as inverted square cup (explicit);

set (false) if you want to see embedded

spaces shewn as white space (implicit);

if (debugging),

\m@ssage is synonymous with \message

otherwise

it simply throws its parameter away;

the \verbatim macro takes one parameter

and immediately starts a nested group

within which \n@sted is defined

to start a further group within which

\n@sted becomes a synonym for \endgroup

and the environment is restored to that

which obtained two levels of nesting out;

for tidyness, we ignore any (lwsp)

which follows the escape character;

we assume Knuth's font-selectors and

select the 'typewriter' font;
0 0 0

/,/,/, we initialise \Qnvironment
0 0 0 /,A/, to prepare to restore \parindent

0 0 0 / , / ,A and \parskip;

0 0 0 I/,/, and ensure that the value to be assigned to
0 0 0 A / , / , \parskip is properly terminated;
0 8 0 A/ , / , we then set \parindent and
0 * 0 / , L A \parskip to 0 pt;
%%% and initialise \c@unt to 0;
0 0 0 A / , / , this loop checks the \catcode of each
* I I / , A / , character code in the range 0.. . I27

%%'A (or 0.. -255 for TEX V3) and if it

%'I/, is other than (letter) or (other), as
0 0 0 /,/,I! appropriate, saves the current value in
0 0 0 / , A / , \Onvironment for subsequent restoration

%%% within an inner group; it then sets the
0 0 0 A/ , / , \catcode to either (letter) or (other);

TUGboat, Volume 11 (1990), No. 2

\ e l s e \ i f n u \c@unt > ' \z%

\s@ve \catcode \c@unt = \@ther

\ e l s e \ifnum \c@unt > ' \Z%

\ifnum \c@unt < ' \ a%

\s@ve \catcode \c@unt = \@ther

\ e l s e \s@ve \catcode \c@unt = \ l @ t t e r

\f i

\ e l s e \s@ve \catcode \cQunt = \ l a t t e r

\f i

\f i

\f i

\advance \c@unt by 1

\ifnum \c@unt < 128 % or 256 for the V3 sites . . .
\ repeat

\ch@rcode = '#I% 0 0 0 / , A / , we next save the character code of the
0 0 0

/,/,/, character which has been specified as the
0 0 0 / ,A / , escape character in \ch@rcode;

\edef \@nvironment 0 0 0 A / , / , and append code to \@nvironment
(\@nvironment 0 0 0

/,/,/, to make the escape character active;

\catcode \ the \ch@rcode

= \ a c t i ve

\space o e O Id/, (space) separates list items in \@nvironment

3 %
\catcode \ch@rcode 0 0 0 / , / , A the escape character is made active;

= \ a c t i ve

\uccode '\--M = \ch@rcode %%% and the upper-case code of (return) is made
%%% equal to the character-code of the escape
0 0 0

/,/,/, character; this is necessary because only
0 0 0 A / , / , (return) can be guaranteed to be active at
0 0 0 A / , / , this point, and we need an active character
9 0 P /,I,/, to form the primary operand of \def;
0 0 0

/,/,/, the \Qxs below are \expandaftem,
0 1 0

/,/,/, and the effect is to upper-case (return)
0 0 0 / , A / , (yielding the escape character), then \def
0 0 0 A / , / , (an active instance of) this character as
0 0 0

/,/,/, \n@sted, which has been defined above;

%
\@x \uppercase \@x (\@x \def \ r@turn {\n@sted))%

%
\uccode '\^-M = 0 0 0 0 / , / ,A the upper-case code of (return) is then re-

0 0 0 / , / ,A instated (not strictly true; it is set to 0,

%%% which is assumed to be its previous value
0 0 0 / , A / , - could be improved here);
0 0 0 / ,AL (return) is made active;
0 1 0

/,/,/, and so is (space) (to avoid space-elision);
0 0 0 / , A / , finally, the finite-state automaton which
0 0 0 / , / ,A processes space)^ is set to (void);
0 0 0

/,/,/, this ends the definition of \verbatim.

\Qct i vec r

\ac t ivespace

\vQid

1%

0 0 0 /,A/, \s@ve minimises the \catcode restoration
0 0 * A / , / , work of \@nvironment by saving only the
0 0 0 A/ . / , \catcode of characters whose \catcode

%%% is to be changed; it then changes the
0 0 0 /,/,I, \catcode of those characters.

TUGboat, Volume 11 (1990), No. 2

e 0 0 / , / ,A the code which follows implements the finite

%%% state automaton which determines whether
e e I /,/,I! space)^ are ignored, shewn explicitly or

%%% implied, and which ensures that blank
0 0 0 /,LA lines are reproduced correctly.

%
\def \vQid (\futurelet \nQxt \vOidifspace)%

\def \Mad {\lQadingspace \futurelet \nQxt \lQadifspace)%

\def \skQp C\vskip \baselineskip \futurelet \nQxt \lOadifspace)%

\def \embQd C\emb@ddedspace)%

\def \sh@wspace (\char 32\relax)%

\def \hOdespace C\leavevmode \kern \fontdimen 2 \font)%

\def \lQadingspace I\ifshewleadingspaces \shQwspace \else \hQdespace \fi)%

\def \embQddedspace {\if shewembeddedspaces \shQwspace \else \hOdespace \f i)%

\def \vOidifspace {\testnQxt (\afterassignment \vQid))%

\def \lQadifspace C\testnQxt (\afterassignment \skQp))%

%
0 e a / , / ,A \testnQxt provides a common look-ahead for
0 0 @ / , A / , \vQidif space and \lQadif space, and also

\def \testnQxt #I% 0 . 8 /,A/, implements some essential debugging hooks.
{\ifx \nQxt \spQcO

\mQssage {Next character is a space)%

\let \nQxt = \relax

\else \ifx \nQxt \rQtQrn

\mQssage CNext character is a return)%

\def \nQxt C#l\let \nQxt = 1%
\else \massage (Next character is \meaning \nOxt)%

\let \nQxt = \relax

\Ox \let \space = \embad

\fi

\f i

\nQxt

1 %
%
\catcode '\ = \active%

\def \spQcei 3%

e e e /,/,I! We next tamper with the \catcode of (space)
e . e I,/,/, and (return), while defining macros and
e e e / ,A / , synonyms which require them to be active;
e * e
I!/,/, the \catcode is then restored to its default
e e e
/,/,/, (not necessarily the previous value -
m e *
/,/,/, could be improved). \@ctivespace makes
e e e / ,A / , (space) active, then defines (space) as
e e * / , / ,A \vOid with a synonym \sp@c@. This code is

%%% used by the finite-state automaton.
\def\Qctivespace%

<\catcode1\ =\active\def C\vQid)\let\spOcQ=)\catcode'\ =lO\relax%

%
\catcode '\--M = \active % e e e A/,/ , (return) is made active;
\def \rQturn (^^MI% e e * / , / ,A \r@turn defined as an active (return);
\let \r@tQrn = -^M% e . e / ,A / , \rQt@rn is made a synonym;

TUGboat, Volume 11 (1990), No. 2

\def \Qct ivecr % %%% and \Qctivecr is defined to

{\catcode ' \ ^ ^ M = \ ac t ive % %%% make (return) active, then

\def ^ ^ M % @ I *
/,/,/, define (return) to manipulate the
e * 0 I,/,/, finite-state automaton and . . .

{\ox \def \spQce {\lQad3%

\Qx \ l e t \Qx \spQcQ \Qx =\spQce %

\endgraf % * * e / ,A / , insert a \par primitive (for blank lines).

\ fu tu re l e t \nQxt \ lQadifspace %

3%
\ l e t \ rQtQrn = ^ ^ M % * 0 e /,A,! \ rQtQrn is synonymous with active (return)

3%

\catcode ' \ - - M = 5 % * a e / , / ,A finally, the \catcode of (return) is
9 . .
/,/,/, restored to its normal value;

%
* * e / , / ,A the \AfterGroup macro is intended for
t e * /,/,I! use within a nested normal environment,
* * * /,/,/, and causes (a concealed macro defined as)
* I I / , / ,A its parameter text to be inserted into
a * * /,A/, W ' s input stream when the nested normal
* * a / ,A / , group terminates.

%
\def \AfterGroup #lC\global \def \af tergroup {#l)\aftergroup \Qftergroup)%

%
\ l e t \Qx = \expandafter 1.1

/,/,/, \Qx is a brief synonym for \expandafter;

%
\catcode ' \ Q = \Qther * e *

/,/./, commercial-at is restored to its normal
e e * / ,A / , (other) catcode (not necessarily the
* * .
/,/,/, previous value - could be improved);

%
\def \mitabrev e * * /,/./, and \mitabrev defined as the closure for

{\endgroup \endgroup>% e e e / , / ,A \verbatim; any other name could be used,

%%% as the code performs no look-ahead for
* * e / ,A/, any particular string.

%
* * a
I!/,/, Finally we announce to the world that we
* a @ / , / ,A have been loaded, and give some clues as
e e * A/ , / , to the usage.

%
\message {Verbatim environment loaded; 3% -

\message {usage: "\noexpand \verbatim <char> . . . <char> \noexpand \mitabrevn3%

o Philip Taylor
Royal Holloway and Bedford New College
P.TaylorrPVax.Rhbnc.Ac.Uk

