
Diagnosing T$jX Errors with a Preprocessor

David Ness
803 Mill Creek Road, Gladwyne, PA 19035

215-649-3522.

Abstract

TEX finds our errors with ease: however, it sometimes reports

them in ways that are hard to understand. Generally this is

because we have confused it by unintentionally misrepresenting

something. For example, if we do something as simple as forget

an escape on a dollar sign 'l&X will probably give us some

obscure diagnostics about math mode. This paper discusses

some preprocessors that can warn us about potential problems

before we submit our files to TEX. These programs may be of

particular help to new users.

Purpose

errors can be difficult to diagnose, particularly
for the new user. is very flexible and general. It
provides a rich world for developing and describing

typesetting processes. The very richness, however,
of this world - and its flexibility and generality -

seems to work against the new user, particularly
by making it hard to see the cause and cure for

problems. The suite of programs described in this

paper attempts to deal with such problems.

The Overview

Instead of writing one (complex) program to help

diagnose T)$ errors, we wrote a number of different

programs, each of which could deal with one, more

restricted, problem domain. The results of these
separate analyses can be integrated into a single

picture. By separating parts of the error analysis

process we allow for independent evolution, and
people who have only one particular problem need
use only the module appropriate to it.

The modules that comprise this suite have the
following functions:

TEXCHECK checks for some common 'l&X errors,

particularly those made by new users. For
example, this module looks for unescaped dollar

signs and percent signs (i.e., $, % instead of \$,

\%).

TEXBRACE takes the input file and keeps careful

track of the use of left and right curly braces. If
the left and right braces aren't properly balanced,

the locations of those not matched are reported.

The source file is also rewritten (temporarily) in
an attempt to make brace problems easy to spot.

TEXLOG analyzes the log that results from running

m . This program, written in AWK-WEB, is still in

a preliminary state and is not described further.

TEXERROR merges the results of running TEXCHECK,

TEXBRACE and (when it is ready) TEXLOG, along

with the original source file, into a new source file

that can be edited to correct the mistakes and

remove any error comments.

TEXFIND is an experimental program designed to
help users relate their input source to the output

obtained from a TEX run. This aid is quite

distinct from the others discussed here.

Organizing a Source File

Users, particularly new users. can find it helpful

to adopt some discipline in organizing their source

files. This will prove useful when diagnosing and
fixing errors. As one gains comfort and familiarity

with m, this discipline can be relaxed, but at

least in the early months it is wise to adhere to
some simple principles.

Keep macro definitions in a separate file, to be

incorporated by an \ input command; this makes

life much simpler. Modifications to macros as they

are debugged represent an effort quite different from

that required to modify the basic text. If these

problems are isolated, it is easier to see what's going

on.
Some of the diagnostic help provided by the

programs in our suite is rendered more effective

when the source is split into logical pieces. For ex-

ample, the TEXCHECK program flags all occurrences

of unescaped number signs (#). Generally these

don't occur in normal text, but they are a regular

TUGboat, Volume 11 (1990), No. 3 - Proceedings of the 1990 Annual Meeting 417

David Ness

part of macro definitions. If the macros are in a s e p
arate file, which we don't pass through TEXCHECK,
then no confusing diagnostics will appear.

TEXCHECK World-view

TEXCHECK was written to warn about potential
problems. Since it is preferable to be warned too
often than not often enough, occasionally warnings
are generated about things that would be found
legal if a more substantial analysis of the Q,X

source were made. The source file is not analyzed
in a deep way, so complex things like mode shifts
and macros will be missed.

The idea of creating a L i n t for 7&X was rejected
because of the complexity of Q,X syntax. After
all, in Q,X it is an easy matter to redefine nearly
everything, and keeping track of all of this would
rival writing the m processor itself!

We gave up on the idea of doing the job
perfectly and may have gone to the other extreme.
Our principal goal is simplicity, in particular we
hope to share these ideas with others, so that
feedback will help us to develop them further.

TEXCHECK warnings. TEXCHECK warns about a va-
riety of possible errors. Most of the warnings are
designed for new users, but even old hands at l$X
may find a pass through TEXCHECK is worth the
trouble, particularly if the source file was captured
by someone not too familiar with 7&X.

Here is a list of warning messages which TEX-
CHECK may issue:

Angle brackets probably need t o be i n \tt font.

Many Q,X fonts place the upside down exclama-
tion point and question mark in the ASCII table
where the angle brackets are in the \tt font. This
warns about all angle brackets in the text, unless
they are preceeded on their line by a percent sign
(and thus are probably in a comment).

Someth ing m a y be miss ing t o avoid end-of-sentence

spacing.

7&X has some sensible, but complex, rules about
when it puts in end-of-sentence spacing. This
warning indicates that T)$ will put end-of-
sentence spacing after a particular period, and
TEXCHECK thinks it may be inappropriate (for
example, on the period after 'Dr').

Perhaps there should be end-of-sentence spacing

here, and there won't be.

We might also have a place where a capital ahead
of a period blank might have suppressed end-of-
sentence spacing when it shouldn't have. This
checks for that situation too.

E m - and En-dashes generally abut the words o n

ei ther side.

English typesetting specification suggests that
dashes abut the words on either side. This warns
about what appears to be contrary usage.

Number-s igns are generally only in macro defini-
t ions .

Number signs are common in normal text so
they may sometimes be entered without being
properly escaped. Since they normally represent
arguments to macros in 9&X, diagnostics can be
confusing. TEXCHECK warns about them indis-
criminately, i.e., it makes no attempt to see if the
unescaped # is being used legally (for example in
a macro definition).

Double quotes should go away.

9&X usage calls for two left quotes and two
right quotes, which become left double quote and
right double quote. While the typewriter double
quote character will produce the Q,X right double
quote, it probably shouldn't be used at all for
quotes in a 7&X source.

Ampersands usual ly perform tab skips.

Ampersands generally represent tab stops in
alignments. This warns about all unescaped
ampersands because error diagnostics that result
from ampersand misuse can be confusing.

Underscores and carets generally are sub- and super-

scripts in m a t h mode .

Sometimes underscores and carets creep into nor-
mal m text. They can generate confusing error
messages there because they ordinarily represent
sub- and super-scripts in math mode. This mes-
sage will appear when underscores and carets are
detected not following a dollar-sign that might
indicate a previous shift into math on the line. In
TEXCHECK no attempt is made to detect whether
we are in math mode, which is complicated to
determine.

'% ' preceded by digits probably should be escaped.

We often forget to escape percent signs. This
can cause text to disappear. This warning raises
a question about situations where a number is
followed by a percent sign (perhaps separated by
blanks), without the percent sign being escaped.

Check t o m a k e sure tha t t h e thing following t h e '%'
sign i s a comment .

As an alternative, if the first thing following a
percent sign (after some optional blanks) isn't
an upper case alphabetic character (that might
begin a comment), then we also raise a question.

418 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Diagnosing ?$X Errors with a Preprocessor

The dollar sign indicates a shift to 'math'. Was
that intended?

If a dollar sign happens to be followed by a
number, it is possible that a real dollar amount
was intended, and an escape forgotten. This
message will, of course, improperly appear when
something introduced in math mode begins with
a number, but this is a smaller price to pay.

Running TEXCHECK. TEXCHECK can be executed
with a number of switches. If none are specified it
will, like the other modules described here, prompt
for the appropriate inputs.

The switch -I x tells TEXCHECK to use 'x' as
the input file. -0 x names 'x' as the output file.
If the switch -F x is used, then the input file is
assumed to be 'x.TEX' and the output file will be
'x . CHK'.

TEXCHECK can issue reports at five different
levels. The level of reporting is indicated with a
-R n. Level 3 provides the greatest amount of
descriptive information while level 0 provides the
least. Level -1 is used when the output of TEXCHECK
is to be fed into TEXERROR.

TEXBRACE Functions

The purpose of TEXBRACE is to help us find errors
in curly-brace structure. These pose particularly
nattering problems for 'QjX because a missing brace
will often cause ll&X to misinterpret some element of
the structure and can create obscure error messages.

TEXBRACE performs two functions. The easier
to understand involves finding the lines on which
unmatched left curly braces occur. A list of line
numbers for unmatched braces is made by the
program and as corresponding right braces occur
this list is adjusted. If the list is not empty at
the end of the file, it shows where the unmatched
braces were. TEXBRACE will also report on excessive
right curly braces if they occur, but this is generally
a less difficult problem.

The other function of TEXBRACE involves cre-
ating a copy of the input file in a form that will
emphasize its brace structure. When writing this
copy, TEXBRACE replaces returns with blanks, thus
producing (impossibly) long lines of text; however,
each time a brace is encountered we drop to a new
line and indent (for left braces) or outdent (for right
braces). The file that results from this isn't good
for anything but looking at brace structure, but any
problems with this structure then turn out to be
obvious.

Running TEXBRACE. TEXBRACE can be executed
with a number of switches. The switch -I x tells
TEXBRACE to use 'x' as the input file. -0 x names
'x' as the output file. If the switch -F x is used,
then the input file is assumed to be 'x. TEX' and the
output file will be 'x .BRC'.

TEXBRACE can issue reports at two different
levels. The level of reporting is indicated with a
-R n. Level -1 is used when the output of TEXBRACE
is to be fed into TEXERROR. Level 0 provides output
to be read by the user. At level 0 the entire text of
the file is rewritten in a way that emphasizes brace
structure. At level -1, only the error messages are
written.

TEXERROR Functions

TEXERROR takes the output of TEXCHECK, TEXBRACE
and (when ready) TEXLOG and merges them with
the original source into a new copy of the file. Each
of the routines identifies the line number on which
potential errors have been reported and this module
takes all messages appropriate for each line and
places them in the output file just following the line
in question.

The lines generated by these programs are in
a format appropriate for 'QjX comments. TEXERROR
also arranges to have the first line of a block of
error messages begin with "%ERRORn and end with
"%ERROR-MERGE End". This makes them easy to
find with a text editor.

Running TEXERROR. TEXERROR can be executed
with a number of switches. The switch -I x tells
TEXERROR to use 'x' as the input file. -0 x names
'x' as the output file. If the switch -F x is used,
then the input file is assumed to be 'x.TEX', the
brace error input file is 'x .BRC', the check error file
is 'x. CHK' and the log error input file is 'x .ERL'.
The output file will be 'x. NEW'.

TEXFIND

TEXFIND is an experimental program designed to
act as a prototype for a 'l&X error facility that
would allow the user to associate the input source
file directly with what is seen in the output.

TEXFIND takes each piece of recognizable text
in a document and follows it with a ll&X call
\spc [m , n] where m represents the line number and
n the column number of the source file line that
began the word in question. Since it is very difficult
to know anything about the actual effect of a
macro without profound analysis, only first level
text is recognized by TEXTFIND.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

David Ness

Once the \spc [. . .I markers have been placed

in a source file, that file can be run through rn
with a definition of \spc [. . . I that will cause

\ spec ia l commands to be written into the D V I file.

This information is then available to display drivers

able to use it to relate things being displayed back

to their original locations in the source file.

An important modification needs to be made

to a source file before it is sensible to run TEXFIND

on it. There are situations (in the middle of a

macro definition, for example) where inserting the

\spc [. . .I markers might prove disastrous. For

that reason a special form of rn comment, %!, is

used to toggle \spc generation on and off. TEXFIND
begins operation with \spc generation o f f , so the

source file should be modified by putting a '%! ' on
the line prior to the one on which the text begins.

At the moment there are no drivers which will

allow us to see the markers, so this represents an

experiment in its earliest stages.

The Implementat ions

The programs described here are implemented in

C-WEBS. The language we used is Norman Ramsey's
implementation via SPIDER. The copyright on these

WEBS has been assigned to TUG, the 7J$ Users

Group, so that they may be freely exchanged

in a community as wide as possible. We hope

that feedback from this community will result in

improvement of these programs.

Relationship to Text Editors

The output of TEXERROR can be processed by any

ASCII oriented text editor. A good editor may deal
effectively with the kind of messages that TEXERROR

produces.

For example, using the old standby PE2, a

definition like:

d a-e = [l/\%ERROR/] [mark l i ne]

[l/ERROR-MERGE End/] [mark l i ne]

makes it possible to locate the next block of error

messages and highlight them simply by typing

<ctrl>-E. The normal editor function <ctrl>-D

will then delete this block of error messages. Thus

it is possible to page through the file with successive

<ctr l>-Es and <ctrl>-Ds.

The TE. BAT File

The programs in this suite work together conve-
niently. One easy way is to construct a DOS .BAT

file that calls them in sequence. The following

simple file TE .BAT does this:

@ECHO OFF

REM "<$TeX Error Analyzer - Ver (I)$>"

TEXBRACE -f %I -r -1

TEXCHECK -f %I -r -1

Echo TEXLOG doesn't ex i s t yet

TEXERROR -f %I

DEL %I .BRC

DEL %1 .ERL

DEL % i . C H K

Here the programs in the suite are executed in

sequence, and the results are fed into the TEXERROR
run where they are merged. Execution of TE

filename results in a file filename .NEW which

should be copied over the original f ilename.TEX
after corrections have been made and it is decided

that the new file is better than the original.

Experiences

A first. and rather pleasant, surprise was that these

programs, particularly TEXCHECK and TEXBRACE,

proved to be helpful to long time users of rn, as

well as to novices. since both groups still make mis-

takes in files which these programs isolate quickly

and without much fuss.
The programs have also proved useful by al-

lowing sophisticated users to have texts typed
by typists not very experienced with m. The

rules about typing \%, \$, \& instead of %, $. & tend

to be forgotten until these things have been typed
many times. With these programs it doesn't seem

to matter whether they are remembered, since it's

so easy to find these mistakes and fix them.

Acknowledgements

The ideas presented here resulted from discussions

involving S. Bart Childs of Texas A&M University,

Alan Hoenig of John Jay College, and the author.

Suggestions from many others with whom we have

discussed this idea over the past six months are

gratefully acknowledged.

420 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

