
TUGboat, Volume 11 (1990), No. 4

\ o r \ a f t e ra s s ipen t \ a fbQxagarg

\f i

\setbox\afbox)

\def\afbQxagargC\aftergroup\afbQxarg)

First. \afterbox puts the (argument) into

\afbQxarg. Then the \chardef command reads a

(number) which turns out to be a (normal integer)

with a (character token) (see The m b o o k , p. 269).

As the syntax of (number) requires, w expands

tokens and looks for (one optional space) which
turns out (empty). This looks crazy. but it has

the effect of unpacking the first non-expandable
token of (box) if it was hidden behind expandable

tokens like \null or \line (or \Boxit below). This

non-expandable token's meaning is then assigned to
\next and tested by \afbQxtest. It must be one

of the seven primitives listed with the \if xs, and

the cases 1 and 2 correspond to the two behaviours
of \afterassignment mentioned above. In both

cases, \afbQxarg will reappear exactly at the time

when the \setbox assignment is finished, e.g.:

\af terbox \t \box1

results in \setbox\afbox=\boxl \t. whereas

\afterbox \t \hboxih)

first becomes . . . \hbox(\afbQxagarg h) and then

results in \setbox\afbox=\hbox(h)\t.

For example,

\def\BoxitC\hbox\bgroup\afterbox

{\mule

\dimenO=\dp\afbox

\advance\dimenO by3.4pt

\lower\dimenO \vbox

{\hrule \kern3pt

\hbox{\kern3pt\box\afbox\kern3pt)

\kern3pt \hrule)%

\mule \egroupI)

solves Ex. 21.3 of The m b o o k with \Boxit<box>

instead of \boxit(<box>), and \Boxit<box> is

itself a (box), so that \Boxit\Boxit<box> makes a

double frame. The macro \framedhbox defined by

\def\framedhboxC\Boxit\hbox)

can be used exactly like the primitive \hbox:

It can also be \raised, or assigned to a box register,

and to or spread can be specified.

o Sonja Maus
Memelweg 2

5300 Bonn 1

Federal Republic of Germany

An Indentation Scheme

Victor Eijkhout

Indentation is one of the simpler things in w: if
you leave one input line open you get a new para-

graph, and it is indented unless you say \noindent.

And if you get tired of writing \noindent all of the
time, you declare

at the start of your document. Easy.
More sophisticated approaches to indentation

are possible, however. In this article I will sketch

a quite general approach that can easily be incor-

porated in existing macro packages. For a better

appreciation of what goes on, I will start with a tu-
torial section on what happens when rn starts a

paragraph.

1 Tutorial: paragraph start

When w is not busy typesetting mathematics, it

is processing in horizontal mode. or vertzcal mode.
In horizontal mode it is putting objects - usually

characters-next to each other: in vertical mode it

is putting objects - usually lines of text - on top of
each other.

To see that there is a difference, run the follow-

ing pieces of code through 7&X:

\hboxCa)

\hboxCb)

\bye

and

a

\hboxCb)

\hboxCc)

\bye

You notice that the same objects are treated in two
different ways. The reason for this is that 7&X starts

each job in vertical mode, that is, stacking material.

In the second piece of input saw the character

'a' before it saw the boxes. A character is for TEX
the sign to switch to horizontal mode, that is, lining

up material, and start building a paragraph.

Commands that can make l&X switch to hor-

izontal mode are called 'horizontal commands'. As

appeared from the above two examples characters
are horizontal commands. but boxes are not. Let us

now look at the two most obvious horizontal com-

mands: \indent and \noindent.

1.1 \indent and \noindent

\indent is the command to start a paragraph with

indentation. 7&X realizes the indentation by insert-

614 TUGboat. Volume 11 (1990). No. 4

ing a box of width \par indent . If you say \ inden t

somewhere in the middle of a paragraph you get
some white space there, caused by the empty box.

\noindent is the command to start a para-

graph without indentation. After this command

rn merely switches to horizontal mode; no inden-
tation box is inserted. If you give this command

somewhere in the middle of a paragraph it has no

effect at all.
If rn sees a horizontal command that is not

\ inden t or \noindent, for instance a character, it
acts as if the command was preceded by \ inden t .

This is why paragraphs usually start with an inden-

tation.

As an illustration here is a small variation on

the above two examples:

\no indent

\hboxCa)

\hbox{b)

\ indent

\hbox{a)

\hbox{b)

\bye

Now in both cases the boxes are part of a para-

graph that was explicitly begun with \ indent or

\noindent.

1.2 Using \everypar

performs another action when it starts a para-

graph: it inserts whatever is currently the contents

of the token list \everypar. Usually you don't no-

tice this, because the token list is empty in plain

TEX (the rn book [I] gives only a simple example,

and the exhortation 'if you let your imagination run

you will think of better applications'). IPW [2] ,

however, makes regular use of \everypar. Some

mega-trickery with \everypar can be found in [3].
0 Just to show how this works, I put in front

of this paragraph the statement

\everypar=($\bullet\quad$)

That is, I told l&X that $\bul le t \quad$ should be

inserted in front of a paragraph.

There's nothing specified for this paragraph;

I get the bullet for free, as \everypar does exactly
what its name promises: it is inserted in front of

every paragraph.

At the end of the previous paragraph I specified

\everypar={)

so nothing is inserted from this paragraph onwards.

1.3 Removing indentation

Every TFJ user knows that indentation can be pre-

vented globally by setting \par indent to zero. How-

ever, this is rather crude, and if you use the plain

macros you may notice several rather unpleas-
ant side effects of this action, for instance when you

use the macros \ i tem and \ footnote .

It is possible to use \everypar to prevent in-
dentation, or more correctly: to remove indentation.

This can be achieved by

This needs some explanation.

If the last item that was processed by is a

box, then that box is accessible by the command

\ l a s tbox . If the last item was not a box then

\ l a s t b o x is an empty box, but no error ensues. As

the \everypar list is inserted after any indentation
box, the \ l a s t b o x command will get hold of the

indentation box if there is one. By assigning the

last box to another box register - here \box0 - it
is removed from where it was previously.

Finally, the statement

is enclosed in braces. W ' s grouping mechanism

restores values when the group ends that were cur-

rent when the group began. In this case it has the

effect of totally removing the indentation box: first
it is taken and assigned to \boxO, then the value

of \box0 is restored to whatever it was before the

group began.

1.4 Other actions at the start of a
paragraph

In the above discussion I have omitted one action
that takes place at the start of a paragraph: TEX in-

serts (vertical) \pa rsk ip glue above the paragraph.

As this has no relevance for the subject of inden-
tation I will not go into it any further. However,

in a subsequent article I will give more information

about \parskip.

2 To indent or not to indent

In classical book typography [4] every paragraph is

indented, with the exception of the first paragraph

of a chapter or section. Nowadays a design where

no paragraph indents is quite common. There are

two mixtures between always indenting and never

indenting: occasionally indenting, and occasionally
not indenting. Thus it seems possible to character-

ize indentation strategies by two yes/no parameters:

one that decides whether paragraphs should indent
in principle, and another parameter that can over-

TUGboat, Volume 11 (1990), No. 4

rule those decisions. Let us now see how this can be
implemented in m.
2.1 Implementation

Above I have already indicated that changes to

\parindent should be avoided. Let us then assume

that \parindent is greater than zero, even if we will

never indent a paragraph (see [5] for other uses for
the \parindent quantity). We must then realize
unindented paragraphs by removing their indenta-

tion as explained above.

First we need a macro for removing the inden-

tation:

Then we need the switches that control indentation:

\newif\ifNeedIndent %as a rule

\newif\ifneedindent %special cases

Now for the definition of \everypar. This is a bit

tricky.
Let us first collect some bits and pieces. The

main question is to decide when \removeindent

should be called. This is for instance the case if

\NeedIndentf alse, and that parameter is not over-

ruled by \needindenttrue.

\ifNeedIndent

\ifneedindent

\else \removeindentat ion

\fi \fi

Indentation should also be removed when

\needindentf alse overrules the general parameter

\NeedIndenttrue.

\ifNeedIndent

\else \ifneedindent

\else \removeindentation

\fi \fi

Next we should make sure that \ifneedindent is
used only for exceptional cases: if the user or a

macro sets this parameter to a different value from
\if NeedIndent . then that should be obeyed exactly

once.

\ifNeedIndent

\ifneedindent

\else \needindenttrue \fi

\else \ifneedindent \needindentfalse

\fi \fi

This is then the full definition of \everypar:

\everypar={\controlledindentat ion)

\def \controlledindentat ion

(\if NeedIndent

\ifneedindent

Another implementation would be possible:

This saves one conditional, but for most paragraphs

it involves an unnecessary \let command.

2.2 Usage

My aim in developing this indentation scheme was

to hide all commands pertaining to indentation in

macros. The user should have to specify only once

whether paragraphs should indent as a rule:

and then macros should declare the exceptions:

2.3 But couldn't you simply . . . ?

Maybe people who read this have written macros

themselves that end like

This works reasonably well, but it is not completely
safe. In the first case there shouldn't be an empty
line after a

call, and in the second case there can only be one

empty line after

The reason for this is that every empty line gener-

ates a \par command, which annuls the effect of the

\noindent. Hence the more drastic approach.
An argument the other way around can also be

found, by the way. As Ron Whitney pointed out to

me, the following piece of code causes trouble:

\section{Title)

{\smallcaps The first) words are ...

616 TUGboat, Volume 11 (1990), No. 4

Any changes made by \everypar are now effected ment, the macro \xevpar unwraps the \temppar to-

inside a qroup. In this case one remedy is to insert ken list and the constant actions into \everypar. - -

a \ leavemode command, or to define

\def\smallcapswords#l(\leavevmode

(\smallcaps #I11

which can be used at any place.

Another remedy would be to let all assignments
controlling indentation be global. However, there

are some subtle objections to this.

3 About macro packages and users

Above I remarked that plain rn does not use

\everypar, and that IPm redefines it a lot. This

means that in plain the user is free to take ev-

ery value of \everypar that he or she likes; in I4"

every attempt of the user to use \everypar is im-
mediately thwarted.

One might ask how the use of \everypar that
I have sketched compares to this. Can the user be
allowed to access \everypar, even if the macro pack-

age needs it all the time?

In my own 'Lollipop' format I have taken the
following way out. The user or the style designer is

allowed to fill in \everypar. as long as the statement

\ the\everyeverypar

is included. Here \everyeverypar is the token list

with the constant actions such as indentation control

that should be performed always.

A format designer who wishes to hide even this
from the user or the style designer, could use the

following piece of code

\newtoks\temppar

\def\everyparagraph

C\af terassignment\xevpar

\temppar)
\def\xevpar

(\edef \act(\everypar=
(\the\everyeverypar

\the\temppar

11%
\ a c t3

so that it becomes possible to write

\everyparagraph={\DoSomething

\everyparagraph=())

while the \everypar will still contain all of the con-

stant actions.

Short explanation: \everyparagraph is a
macro that is made to look like a token paramter by
the use of \af terassignment. This latter command

sets aside \xevpar for execution after whatever fol-
lows is assigned to \temppar. Following the assign-

4 Conclusion

In a systematic layout indentation commands need

never be typed by the user; they can all be hidden in

macros. Using \everypar it is possible to prevent

indentation both in single instances, and throughout
the document. This has the advantage that is is not

necessary to zero the \parindent parameter or use

\ indent and \noindent instructions.

The approach of employing \everypar as
sketched above can also be used for a paragraph skip

schenk, as I will show in the subsequent article.

References

[I] Donald Knuth. The m b o o k , Addison-Wesley

Publishing Company, 1984.

[2] Leslie Lamport. WI&X. a document preparation

system, Addison-Wesley Publishing Company,

1986.

[3] Victor Eijkhout, Unusual paragraph shapes,

TUGboat vol. 11 (1990) #1, pp. 51-53.

[4] Stanley Morison. First principles of typography,

Cambridge University Press, 1936.

[5] J. Braams, V. Eijkhout, N.A.F.M. Poppelier.

The development of national IPTfjX styles. TUG-

boat vol. 10 (1989) #3, pp. 401-406.

A \parskip Scheme

Victor Eijkhout

While I was working on the I P W styles described

in [I], it became apparent to me that lots of people
are rather fond of the sort of layout that can be

described as

\par indent =Ocm

\parskip=6pt % or other pos i t i ve s i z e

Unfortunately, most of them realize this layout by

no more sophisticated means than simply inserting
these two lines at the beginning of the input. The

drawback of such a simple action is that all sorts

of vertical spaces are augmented by the \parskip

when there is absolutely no need to, or where it is
positively unwanted. Examples of this are the white

space below section headings. and the white space
above and below list environments in UTm.

