
TUGboat, Volume 11 (1990)' No. 4

(A new global variable, trace-depth, is declared
somewhere and initialized to zero. It is used to

indent the output of D e m o m so that the depth of
subroutine nesting is displayed.)

At the beginning of expand (in $366): we put
the statements

incr (trace-depth);

if tracing-stats > 2 then print(",<xU);

this prints '<x' when expand begins to expand

something. The same statements are inserted at the

beginning of scan-int ($400), scan-dimen ($448),

and scan-glue (sec461)' except that scan-int prints
'c i ' , scan-dimen prints '<d3, and scan-glue prints

'cg'. (Get it?) We also insert complementary code
at the end of each of these procedures:

decr (trace-depth);

if tracing-stats > 2 then print-char(">");

this makes it clear when each part of the scanner
has done its work.

Finally, scan-keyword is instrumented in a

similar way, but with explicit information about
what keyword it is seeking. The code

incr (trace-depth);

if tracing-stats > 2 then
begin print (",< '"); print (s) ;

print-char (I 1 - ");
end;

is inserted at the beginning of 5407, and

if tracing-stats > 2 then print-char("*");

exit: decr (trace-depth);
if tracing-stats > 2 then print-char(">"):

end;

replaces the code at the end. (Here '*' denotes
'success': the keyword was found.)

For example, here's the beginning of what

D e m o w prints out when scanning the right-hand
side of the assignment to \hfuzz in problem 18:

I ! t h e charac te r = <d
I! t h e charac te r 1 <i

I! t h e charac te r 1

I! t h e charac te r 0
I ! t h e charac te r 0

I ! t h e l e t t e r P>

I ! t h e l e t t e r P <'em'

I ! t h e l e t t e r P> < 'ex '

I ! t h e l e t t e r P> < ' t r u e '

I ! t h e l e t t e r P> < ' p t '

I ! t h e l e t t e r P
I! \ i fdim =\ifdim <x <d

I! t h e charac te r 1 <i

I ! t he charac te r 1

l ! t he charac te r 2

I! t he l e t t e r p>
I! t he l e t t e r p <'em'

I ! t he l e t t e r p> < ' ex '

I ! t he l e t t e r p> < ' t r u e '
I ! t he l e t t e r p> < ' p t '

I ! t he l e t t e r p

I! t he l e t t e r t*>

I! t he charac te r =>

(After seeing '=', TEX calls scan-dimen. The next
character seen is '1'; scan-dimen puts it back

to be read again and calls scan-int, which finds

' loo' , etc. This output demonstrates the fact

that frequently uses back-input to reread a
character, when it isn't quite ready to deal with

that character.)

Acknowledgement

I wish to thank the brave students of my exper-

imental class for motivating me to think of these
questions, for sticking with me when the questions

were impossible to understand. and for making
many improvements to my original answers.

o Donald E. Knuth
Department of Computer Science
Stanford University
Stanford. CA 94305

Webless Literate Programming

Jim Fox

Abstract

This article introduces c-we8 (no-web, for short) as

an alternative to the CWEB 'literate programming'
system. c-web is a method which allows a program-

mer to both t e x (format) and cc (compile) the same

source, without the need for preprocessors.

What is ewe8

In c all comments begin with the characters ' /*'
and end with the characters '*/'. c-web is a macro
package that w s all comments, 'verbatims' all the

code, and uses the comment delimiters to switch be-

tween the two modes. A c-we8 program can be com-

piled directly by c and can be formatted directly by
w. It has the advantage of high portability, while

providing fully m ' d comments, page headers and
footers, and a table of contents.

TUGboat, Volume 11 (1990), No. 4

\title{ . . . 1 Titles the program.

\section{ . . .) Begins a section. The
section title is also included in the ta-
ble of contents and in the page header.

\subsection{ . . .) Begins a subsection.

The subsection title is also included in

the table of contents.

\subsubsection{ . . .) Begins a subsub-

section.

\newpage Causes a page eject after the cur-

rent line. This is usually used in a com-

ment by itself. e.g., /* \newpage */.

\endc Ends the c-we8 listing. This is

usually the last line in the file, e.g..

/* \endc */.

\" . . . " Prints bold text.

\ ' . . . ' Prints italic text.

\ I . . . I Prints typewriter text.

< . . . > Prints verbatim. This allows c

code to be included in comments.

Figure 1: c-weB definitions

Why C-web?

CWEB is essentially a c implementation of Edsger
Dijkstra's Notes on Structured Programming, with

fine formatting thrown in for good measure. The

benefits of WEB are well known but it is unsuitable

for many programmers and applications for a couple

of reasons.
The first problem concerns portability. A pro-

gram written in CWEB can only be conveniently im-

plemented on a computer which already runs TEX.
That is unfortunately a very small subset of the com-
puting world. Anyone writing in CWEB greatly lim-

its the portability of his or her programs.
The second problem concerns the translation of

the code part of a program. A well written program
consists of small pieces of code consisting of a doc-

umentation part, which explains to humans what

the part does and how it does it, and a code part,
which is a realization of the documentation. Both

CWEB and c-we8 print program listings assuming

this method, and they both the commentary.

Where they differ is in the formatting of the code.

c-we8 leaves it alone except for indentation. CWEB

gratuitously translates it into something that looks

more like mathematics. Because programs undergo

continual modifications. one tends to look to the

source file to see what the code actually does. Many

programmers, myself included, are more comfort-

/* samp1e.c in cnoweb format
by Jim Fox, August 19, 1990

\input cnoweb

\title {Sample with procedure) */

/* \section{Sum)
This procedure computes and returns

$$ {\bf sum) = \sum-Ci=O)-{\bf n)

{\bf f) (i) $$

There is no error checking

in this example. */

double sum(f ,n)

double (*f) () ; /* function to call */
int n; /* summation limit */
{

int i;

double s = 0;

for (i=O; i<=n; i++) {

s += f (i) ;

3
return (s) ;

1

/* \endc */

Figure 2: Procedure sum from program sample.

able with code in the file that looks like the code in

the listing.
CWEB allows a programmer to break programs

into small pieces without resorting to c's procedure
calls. This is an attempt to directly implement the

'layers' described by Dijkstra. c - 6 cannot do this.
However, procedures are often the better choice.

They are more easily tested. more formally isolated

from the caller, and usually produce more flexible

code.
In any case, my effort here is only to introduce

an alternate 'literate programming' method-not to

compare the two beyond this introduction.

Using c-web

The c-weB program must begin with a comment that

contains:

\input cnoweb

and must end with a comment that contains:

TUGboat, Volume 11 (1990) , No. 4

sum(f,n) sample - 9

/* sum(f,n) This procedure computes and returns
n

sum = C f (i)

There is no error checking in this example. */

double sum(f ,n)

double (*f) () ; /* function to call */
int n; /* summation limit */
C

int i;

double s = 0;

for (i=O; i<=n; i++) C
s += f (i) ;

1
return (s) ;

1

Figure 3: sum from the listing of samp1e.c

Other than this the program need not contain

any text. Most programs, however, will use

plain commands in comments. as well as sev-

eral new commands provided by c-web. These are
described in Figure 1.

Figure 2 is a sample procedure, sum, from a

program in c-web format. Figure 3 is the listing of

the procedure. Not shown in figure 3 is the title

page, which includes the title, synopsis (none in this

example), and table of contents.
Features of c - 4 , some of which are demon-

strated in the example, include:

1. Page breaks occur only before comments.

2. The code portion is printed not quite

verbatim-indentation is automatically pro-

vided. Lines following an opening bracket or

parenthesis are indented until the line contain-

ing the closing bracket or indentation.

3. The page heading contains the c file name, the

page number, and the current section name.

4. Alignment rules on the top and left help verify
indentation.

Trying it out

A sample program (pf . c) demonstrates c - 4 and
describes the commands in more detail. Inter-

ested persons should obtain a copy of the macro file
(cnoweb. tex) and the sample program by anony-

mous ftp to u.washington. edu. They are in the

directory pub/tex/cnoweb. Anyone without access

to ftp may request the files by mail to me at the

address below.

o Jim Fox

University of Washington

foxQcac.washington.edu

A Previewer for "Slow" Terminals

Harold T . Stokes

In our department, we have a multi-user computer

cluster with one copy of and one laser printer.

Our previewer sends document pages to the user's
terminal in the Tektronix 4010/4014 graphics for-

mat. Most graphics terminals can emulate the

Tektronix 4010/4014. This includes PCs using a
terminal emulator like MSKermit.

The terminals in our department are connected

to the system through a data switch. The rate at
which data can be sent to a terminal is limited to

9600 baud (1200 bytes/second). This is rather slow
for displaying graphics.

As an example, consider how we might draw

the character T on the screen. The individual pixels
for this character (from the cmrl0 font) are shown

in Fig. l a . Since Tektronix 4010/4014 graphics

is vector-oriented, we might try the obvious raster

scan shown in Fig. lb . However, there are 44 line
segments in that raster scan. To draw a single line

segment in Tektronix 4010/4014 graphics, at least

seven bytes must be sent to the terminal (sometimes

eight or nine). At 9600 baud, it would require at
least 0.25 seconds to display this single character.

An entire document page which may contain 3000

characters would require more than ten minutes to

be displayed. This, of course, is unacceptable for a

previewer.

(a) (b) (c)

Fig. 1. The character T from cmri0: (a) pixels,

(b) raster scan, (c) stick figure.

