
TUGboat, Volume 11 (1990), No. 4

many text-processing and desktop-publishing sys-
tems still lack APL support, it remains difficult to
achieve high printing quality in publications com-
posed of text and APL code. Several extensions
to existing text processors have been implemented
(cf. [Hohti, Kanerva 881). However, most of them
support either only the symbols of one APL dialect
or only one machine or operating system platform.
[Hohti, Kanerva 881 already demonstrated the use-
fulness of w for APL typesetting. The authors
produced a METAFONT description for APL prim-
itive symbols and a set of TJ$ macros to support
Digital's APL interpreter for the VAX-11 series.

In this paper we present our solution to the
problem: An APL publishing system consisting of
an APL front end and a Urn document style op-
tion. The APL front end automatically converts
APL material into I P W code which you can \input
into any standard I4w document. The I4w doc-
ument style option apl . s t y provides macros defin-
ing all APL characters as combinations of standard
I P w symbols, thus relieving us from the burden
of designing new fonts and the user from the task
of incorporating them into the I P w system. As
additional benefit, size and type style of the APL
symbols can be changed by the familiar I P w com-
mands (e.g. \Large, \ s f) .

Compared with the approach of Hohti and Kan-
erva mentioned above, our solution offers the follow-
ing advantages:

Several APL dialects are supported (currently
APL2, Dyalog APL, I-APL, Sharp APL, and
A PL.68000).
No additional fonts are required.
APL symbols for all IPT@ sizes and type styles
are available.
We provide support for automatic typesetting
of APL objects.

There are some disadvantages, however; they
are higher TEX interpretation overhead and higher

memory usage.

2 The APL Publishing System

The APL publishing system consists of two parts,
the APL front end and the I P W document style op-
tion apl . s t y which communicate via a carefully de-
signed interface of w macros (see Figure 1). This
ensures that both parts of the system can be modi-
fied independently.

Each of these modules is composed of two layers
(see Table 1). The main task of the low level for-

I APL code

APL Front end r-l

DVI code qros
Figure 1: Modules of the Publishing System

matt ing layer is the printing of single APL symbols.
The APL front end maps each symbol into a T)$
macro name and produces files to be \input into
I P w documents. The UTJ$ style option ap l . s ty
contains one macro definition for each APL charac-
ter.

APL code is more than just a stream of APL
symbols. The high level formatting layer knows
about functions, operators, arrays, and expressions.
Our APL front end provides special functions for
typesetting these objects. The I P w style option
defines the corresponding environments.

level (1 language / document

formatting elements elements

I~TEX document

style option

symbol

construction

Low

level

formatting

High

Table 1: Layers of the Publishing System

APL

front end

symbol

translation

3 Typesetting APL Symbols

APL

If using a few APL symbols in an ordinary doc-
ument is all you need, you can forget about
the APL front end. Simply adding the op-
tion ap l to your preferred IPT@ document style
(e.g. \documentstyle [12pt ,ap l l {ar t ic le)) en-
ables you to state in your paper, e.g.:

logical

By combining the simple APL symbols 0
and * we obtain the compound symbol @.

The code to produce this statement is:

TUGboat, Volume 11 (1990), No. 4

\begin{quot at ion)

By combining the simple \APL\ symbols
\APLcircle\ and \APLstar\ we obtain the

compound symbol \APLcirclestar.

\end(quot at ion)

In fact, you can typeset all simple and com-
pound symbols of APL2, as we have defined macros
for all of them. Tables 2 and 3, respectively, show
them together with their macro names.

\APLnotgreater 5
\APLnotless 2

\APLomega w

\APLoverbar
-

\APLplus +
\APLquad 0
\APLquery ?

\APLquote
I

\APLrho P

\APLrightarrow +

\APLrightbracket 1
\APLrightparen

\APLrightshoe 3

\APLsemicolon 7

\APLslash 1
\APLslope \
\APLstar *
\APLS~ ile I
\APLt ilde N

\APLt imes x

\APLunderbar -

\APLuparrow t
\APLupcaret A

\APLupshoe n
\APLupstile r
\APLuptack T

Table 2: Simple APL2 Symbols

IBM was the first company to implement APL
but it did not remain the only one. Companies such
as I. P. Sharp and Dyadic Systems have produced
their own versions of the language. These and other
companies, however, introduced only a few symbols
not found in APL2. We have added twenty addi-
tional symbols to the APL2 character set to s u p
port typesetting Dyalog APL, I-APL, Sharp APL,
and APL.68000 (see Table 4).

As you have probably guessed from the names
in Tables 2, 3, and 4 we stick to a naming convention
in order to minimize name clashes with other macro
packages and also help users remembering the macro

\APLcirclebar 8
\APLcircleslope 6)
\APLcirclestar 0
\APLcirclestile @
\APLdelstile T
\APLdeltastile 4
\APLdeltaunderbar - A

\APLdelt ilde 6'

\APLdieresisdot

\APLdowncarettilde Y

\APLdowntackj ot h

\APLdowntackuptack I
\APLepsilonunderbar - E

-
\APLequalunderbar - -

\APLiotaunderbar - 2

\APLleftbracketrightbracket 0
\APLquaddivide El
\APLquadj ot I3
\APLquadquote I3
\APLquadslope

\APLquotedot

m
!

\APLslashbar f
\APLslopebar t
\APLupcarettilde 791

\APLupshoejot f3

\APLuptackjot 7P

Table 3: Compound APL2 Symbols

names. All macro names start with the \APL pre-
fix, followed by the name of the symbol used in the
APL literature. The symbol names for APL2 char-
acters are taken from [IBM 851. For those characters
(cf. Table 4) which are not included in the IBM list
we have invented consistent names. We always use
symbol names, not the name of APL functions these
symbols might represent. The name of a compound
APL symbol is the concatenation of the names of
the simple APL symbols it is created from.

As can be seen in Figure 2 which shows the
character set (the atomic vector UAV) of APL2, not
all APL characters are fancy symbols, and the lan-
guage uses ordinary alphanumeric characters as well.
To allow for a clean interface between the APL front
end and the I4m part of our system, we decided
to define macros for these characters as well. Their
names are constructed as follows:

Each macro name starts with \APL.
For each letter we append the upper or
lowercase letter, if the letter is underlined we
prefix the letter with "u".
Capital letters: \APLA, . . . , \APLZ.

TUGboat, Volume 11 (1990), No. 4

\APLdieresiscircle o
\APLdieresisdel 0
\APLdieresis jot o

\APLdieresisstar -k

\APLdieresistilde ,-d

\APLdieresisuptack T

\APLlef ttack k

\APLnot equalunderbar $

\APLquaddownarrow [5]
\APLquadlef tarrow

\APLquadrightarrow

\APLquaduparrow [TI
\APLrighttack -1

\APLstilebar t
\APLtheta 6'

Table 4: Symbols Used in APL Dialects

Lowercase letters: \APLa, . . . , \APLz.
Underlined capital letters: \APLuA, . . . ,
\APLuZ.
Underlined lowercase letters: \APLua, . . . ,
\APLuz.
For numbers we simply append their names:
\APLzero, . . . , \APLnine.

The tiny numbers in the atomic vector of Fig-
ure 2 correspond to positions for which no print-
able characters are defined by APL2. In case the
APL front end encounters a non rintable charac-
ter, e.g. the one at position 20 in 6 AV, it generates
\APLmiss<ZO). The definition of the macro
\APLmiss determines the printed representation of
this character (the default macro in our style just
prints the corresponding number in style \ t iny) .

Let us close this section with one more example
of typesetting APL symbols:

\APLquaddivide\APLA\ corresponds t o
$AA<-I>$ i n mathematical nota t ion
and \APLcircleslope\APLA\ corresponds
t o $AeITI$.

displays as:

A corresponds to A-' in mathematical nota-
tion and 6) A corresponds to AT.

Figure 2: The Atomic Vector of APL2

4 Typesetting APL Objects

Typing the name of an occasional APL symbol
within a normal text is not a real nuisance to the
author of APL texts. But typesetting a larger piece
of APL code certainly is. Imagine a function named
ATREE, which implements a recursive tree traver-
sal algorithm:

V Z + CLASS-LIST A TREE ROOT ;
DEPTH; LIST ; I ; RECLIST ; SUPERCLASS

[l] Z t , C R O O T

121 -+ (v / (, CROOT) - "CLASS-LIST) /
CYCLIC

[31 I t 2 O T F ~ ~ G E T - M E M ' A C L A S S 1 (

ROOT. ' . SUPERCLASS ')
[41 - + ((o p c i p ' 'I--SUPERCLASS)/O

[51 I t (CCLASS-LIST, CROOT) ATREE"
SUPERCLASS

161 z + ((Z Z Z) = z p z) l z + z , T , I , " ,I
[71 + o
[81 CYCLIC:ZC0pO

V

In order to print just the beginning of the
header of the function, you would have to type:

648 TUGboat, Volume 11 (1990), No. 4

\APLT\APLR\APLE\APLE% In the following we present examples for each of
\APLbr\APLspace\APLR\APLO\APLO\APLT\APLb the cases mentioned above. At the same time, the

examples give us the opportunity to demonstrate
Obtaining the familiar function layout used

Mriations of type style and size.
in APL textbooks would require additional code.
What is more, besides being awkward the whole pro-
cess is error-prone: Almost certainly it will result in
a printout different from the APL code.

Therefore we strongly recommend automatic
translation of APL code. We provide an APL front
end which transforms APL objects into logical docu-
ment elements which can be \input into I P W doc-
uments. This guarantees consonance between the
original APL code and its listing and is also more
convenient.

For all APL language elements we have defined
APL functions and corresponding I P W environ-
ments. Our system supports the typesetting of:

an array displayed by the interpreter,
an array in boxed representation,

0 a function or operator displayed by the built in
APL del-editor (V-editor),
a function or operator displayed by APL's

canonical representation function UCR,
a direct definition of a function or operator,

0 an APL expression input by the user.

Apart from minor modifications we have used tradi-
tional layout conventions for all language elements.
For example, the convention that user input is six
spaces indented can be traced back to the very first
implementation of APL. Another traditional con-
vention states that if a line of APL code does not fit
on a single line of the display, the rest of the code
is wrapped around and continues on the next line.
In some functions this rule may lead to line breaks
in the middle of names. Since APL identifiers can
be up to 255 characters long line breaking within
names cannot be avoided in general.

As you can see, arrays and functions can be
typeset in various ways. For example, the above
listing of the APL function ATREE was printed by
the following APL expression:

' TREE ' PRTEX-FN ' ATREE '

The APL function PRTEX-FN produces the
file tree.tex as output. The APL front end not
only maps each character into the corresponding
7l&X macro but it also produces the line numbers in
brackets and the surrounding I P W environments
in order to guarantee uniform display of functions
throughout the document.

4.1 Typesetting APL Arrays

The interpreter usually displays arrays as text ma-
trices on the screen. For example, the matrix X is
displayed as:

The above printout is typeset by the following
code which is automatically produced by the APL
front end:

Note that the structure of X has been preserved
by automatically enforcing fixed spacing. A closer
examination of the code reveals that we have simu-
lated fixed spacing by boxing each character of the
array (\APLmb does this).

Experienced APL programmers recognize the
structure of X at the first glance: X is a two by two
matrix whose upper left element is a two by two
matrix. However, since the use of nested arrays is
typical for second generation APLs like APL2 and
Dyalog APL, another representation of arrays exists
which shows the structure in a more explicit manner:

Most of the work for typesetting the boxed rep-
resentation of X shown above is done by the APL

TUGboat, Volume 11 (1990), No. 4

function DISPLAY which usually comes with the
APL system (e.g. [IBM 851). Our APL front end
just translates the characters generated by this func-
tion; the same I4W environment is used for both
array representations. We only sketch the code for
the boxed representation:

In order to demonstrate the ease of changing
type styles we have decided to put the generated
code unit into an italics environment. This is the
reason for all letters and numbers in the boxed rep-
resentation being in italics. Otherwise, they would
have been roman.

4.2 Typesetting APL Functions

The following APL function is printed in del-editor
style:

A larger font has been selected by inserting the
generated code into a \Large environment:

\begin(Large)

% FNS MEAN
\begin{APLfns)

\begin{APLfnsline){)(\APLdel)

\APLZ\APLleftarrow\APLM\APLE\APLA\APLN

\APLspace\APLX

\end(APLfnsline)

\beginCAPLfnsline)(\APLleftbracket\APLone

\APLrightbracket)C)

. . .
\end(APLfns)

\end(Large)

The canonical representation of an APL func-
tion is simply a text matrix. Since older APL sys-
tems only provide arrays of uniform datatype and
rectangular shape, padding of short lines with spaces
is performed. In contrast to the del-editor style, the
canonical representation is typeset like an APL ar-
ray with fixed spacing and without line numbering.

For the canonical representation of MEAN a small
typewriter type style was chosen:

You notice immediately that we have used the
I4W commands \small and \tt to produce this
effect:

(\small\tt

% CR MEAN
\begin(APLcr)

\APLmbC\APLZ)\APLmb(\APLleftarrow)

\APLmb(\APLM)\APLmb(\APLE)
\APLmb(\APLA)\APLmb{\APLN)

\APLmb(\APLspace)\APLmbC\APLX)

\APLspace\par

In addition to the del-editor representation and
the canonical representation of an APL function we
provide means for formatting direct definitions of
functions, which are supported by only a few APL
dialects, e.g. I-APL:

This direct definition of a function computing
Fibonacci numbers is due to [Iverson 871 and has
been formatted as follows:

\endCAPLline)

Note, that the APLline environment allows lig-
atures within names.

4.3 Typesetting APL Expressions

Finally, our system enables the user to typeset APL
expressions. The expression

X C 2 2 p (2 2 ~ 2 4) ' A ' ' B ' ' C '

which happens to be the one used to generate the
matrix X (our example for formatting arrays) is
printed by:

% EXPR
\begin(APLbold)\begin&lPLexpr)

\APLX\APLleftarrow\APLtwo\APLspace

650 TUGboat, Volume 11 (1990), No. 4

The environment APLexpr provides the tradi-
tional six space indentation for user input.

4.4 Typesetting User Dialogues and

Workspaces

The above examples demonstrate the usefulness of
the six basic document elements we provide. Besides

being useful on their own, we can combine them to
form higher level units. In the current version of the

APL front end, support for typesetting a dialogue

and an APL workspace listing is included.

A dialogue is a pair of user input and inter-

preter response. We typeset the user input as an

APL expression and the interpreter response as an
APL array. The dialogue

S Y N T A X E R R O R

(l (2 3 1 4
A

was generated by entering the following APL expres-

sion

' E l PRTEX-DIALOG ' (l (2 3 1 4 '

Hopefully, most of the dialogues will not result

in a syntax error as the above one. But automati-

cally typesetting examples with errors is very con-
venient for describing APL's error trapping mecha-

nisms in a text book.

An example for the printout of an APL

workspace would be too space-consuming to be in-

cluded here. It basically is implemented by com-

bining the printout of arrays, functions and opera-
tors intertwined with UTEX sectioning commands.

I P W ' s table of contents considerably increases the

utility of a workspace listing. - -

5 Implementation Details

For symbol construction three internal macros had

to be defined. The first, \QAPLmath, puts a math

symbol into a boxed math environment and ad-
justs spacing. The second, \QAPLmraise, puts a

math symbol into a raised and boxed math environ-

ment and adjusts spacing. The third, \QAPLovly,

simulates backspacing and overstriking on a type-

writer by overlaying two boxes. The quad symbol 0

required special construction in order to enerate

readable compound symbols such as 1, 8 , b . Full
reconstruction was needed only for the APL symbol

1 which is a quad symbol with a short vertical rule.
The first version of this symbol used a single quote

instead of the vertical rule and looked rather awk-

ward.

One disadvantage of our solution is high TEX

memory consumption. We have used \ l e t com-
mands wherever possible in order to cut down mem-

ory usage. Typesetting APL symbols for this text
has cost us approximately 6,800 words of w mem-

ory. Typesetting the workspace of the APL kont
end (32 functions, 11 variables, 23 pages) has cost

a total of 72,800 words of TpX memory with 29,000

words used for the APL symbols. We recommend
TEX with 262,141 words of memory.

APL lines are sometimes too long to be printed
in a single line. When displaying them on the screen,

this problem is usually resolved by wrapping them

to the next lines without adding any hyphen. Thus,

line breaks can occur anywhere in an APL line, in
the middle of APL expressions or even in names. As

we use one macro for typesetting each APL char-

acter, the normal TEX hyphenation algorithm no
longer works.

In the definition of each APL symbol which can-

not be used in an identifier the macro \APLgb is
used, which allows breaks with a penalty of -10. To

achieve line breaks in the emergency case the prepro-

cessor inserts the macro \APLbr into names longer

than 15 characters at regular intervals.

When typesetting APL arrays (cf. Figure 2) . a
fixed spaced font is necessary to preserve its shape.

We imitate fixed spaced fonts by simply putting a

box of fixed width around all characters.

For typesetting bold APL code the special en-

vironment APLbold is defined. It sets \bf and

\boldmath and adjusts the thickness of rules used

in symbol construction.

6 Conclusion

In this paper we have presented our solution to the

APL typesetting problem: An APL publishing sys-
tem consisting of a U m document style option and

an APL front end. No additional fonts are needed.

We have given short examples which demonstrate
the usefulness of this approach. The system has al-

ready been used by the authors to prepare several

TUGboat, Volume 11 (1990), No. 4 651

articles published in APL Quote Quad, the journal
of the APL user community.

METAFONT could be used to improve the print-
ing quality of some symbols (cf. [Hohti, Kanerva

881). However, it would be necessary to create a
whole APL font family (different sizes and type
styles) to obtain the flexibility of our system. We
could incorporate special APL fonts without any
change in the APL front end as soon as they be-
come available.

The APL front end is currently implemented
for APL2 and Dyalog APL and can be obtained
from the authors. Further porting is intended. The
I4W document style option will be submitted to
the Clarkson and Aston archives as well as to the
German server at Heidelberg.

The authors would appreciate comments and
suggestions for the improvement of the style as well
as comments with regard to APL symbols not avail-
able in this style.

References

[Camacho et al. 871 Camacho A., Chapman P., Zie-
mann D. (1987), I-APL Instruction Manual for
PC Clones, I-APL Limited, St. Albans, Herts,
England.

[Dyadic Systems Ltd. 851 Dyadic Systems Limited
(1985), Lynwood Dyalog APL User Guide.
Dyadic Systems Limited, Farnborough, Hamp-
shire, England.

[Falkoff, Iverson 731 Falkoff A. D., Iverson K. E.
(1973) "The Design of APL", IBM Journal of
Research and Development, V17, N4, reprinted
in: Falkoff A. D., Iverson K. E. (1981), A Source
Book in APL, APL Press, Palo Alto.

[Hohti, Kanerva 881 Hohti A., Kanerva 0. (1988),
"Typesetting APL with w", APL Quote
Quad, V18, N3, p13-16.

[IBM 851 IBM Corporation (1985), APL2 Program-
ming: Language Reference, IBM Corporation,
San Jose, California.

[I.P. Sharp 851 I.P. Sharp Associates Lim-
ited (1985), SHARP APL/PC Handbook, I.P.
Sharp Associates Limited, Toronto, Canada.

[Iverson 631 Iverson K. E. (1963), "Formalism in
Programming Languages", ACM Working Con-
ference on Mechanical Language Structures,
Princeton N.J., reprinted in: Falkoff A. D.,
Iverson K. E. (1981), A Source Book in APL,
APL Press, Palo Alto.

[Iverson 871 Iverson K. E. (1987), "A Dictionary of
APL", APL Quote Quad. V18. Nl .

[Knuth 861 Knuth D. E. (1986)) The book,
Computers & Typesetting A, Addison-Wesley,
Reading, Massachusetts.

[Lamport 861 Lamport L. (1986), LAW: A Doc-
ument Preparatzon System, Addison-Wesley,
Reading, Massachusetts.

[Micro APL Ltd. 861 Micro APL Ltd. (1986),
APL.68000 for the Apple Maczntosh, Micro
APL Ltd., London, England.

[The University of Chicago Press 821 University of
Chicago Press (1982), The Chicago Manual of
Style 13th Editzon, The University of Chicago
Press, Chicago, USA.

o Andreas Geyer-Schulz
Department of Applied Computer

Science
Vienna University of Economics

and Business Administration
Augasse 2-6
A-1090 Vienna, AUSTRIA
ANDREASQAWIWUW11.BITNET

o Josef Matulka
Department of Applied Computer

Science
Vienna University of Economics

and Business Administration
Augasse 2-6
A-1090 Vienna, AUSTRIA
MATULKAOAWIWi1.BITNET

o Gustaf Neumann
Department of Management

Information Systems
Vienna University of Economics

and Business Administration
Augasse 2-6
A-1090 Vienna, AUSTRIA
NEUMANNQAWIWUW1i.BITNET

