
TUGboat, Volume 11 (1990), No. 4

box register: a box register that contains \vbox{)

will not return true if tested with the \ifvoid

test. So to decide whether \@tempboxa is empty we

cannot use \if void. Instead we employ the simple

strategy of measuring the width of the box. This

will not be 100% failsafe but the failure cases that

I've been able to imagine are all rather exotic.

\ifdim\wd\Qtempboxa=\z@

\setbox\@ne\hbox to\columnwidth{%

\hss\kern-6pc\box\@ne\hss)%

\else % more than one line

\setbox\@ne\vbox{\unvbox\@tempboxa

\noindent\unhbox\@ne

\advance\hsize-6pc\par3%

\f i

The \kern-6pc in the first branch is to offset the

\moveright that is about to be done next. (If
tortured, I would be forced to admit that it took

me several attempts before I figured out the right

amount for this kern and the proper place to put

it.) Finally, we put the caption on the page.

with a \vskip to separate it from the preceding or

following material.

\ifnum\@tempcnta<64 %if it's a figure

\vskip lpc%

\moveright 3pc\box\@ne

\else % if the float IS NOT a figure
\moveright 3pc\box\@ne

\vskip Ipc%

\f i

1

By testing \Otempcnta we can tell whether the

caption is being used in a figure environment or

not; if so, we assume that the caption is placed

below the artwork and hence put the \vskip above

the caption; otherwise we assume the caption is at

the top of the floating insertion and we put the

\vskip below it.

\@makecaption presents a few extra compli-

cations that have been omitted for the sake of

simplicity; as given here, the caption will not be

quite centered if the figure caption has no text, and

SO on.

o Michael Downes
American Mathematical Society
201 Charles Street
Providence, RI 02904

mjdQMath. AMS . com

Looking Ahead for a (box)

Sonja Maus

m ' s primitive \aft erassignment can be used for

macros which first assign a value to a parameter,

and then perform some actions using that value.

For instance the plain macros \mapif ication

and \hglue (see The T~Xbook, p. 364 and 352),

assign a (number) or (glue) value to a variable and

then use this value. They provide a user-friendly

"syntax mimicry": \magnification looks like an

integer parameter in an assignment, and \hglue

looks like the primitive command \hskip. There is

another advantage to this method over the use of

arguments with #I: At the moment when looks

at the tokens of the value. it already knows what

kind of value it is looking for. This would be very

useful when the value to be read is a (box), because

an explicit \hbox or \vbox may contain \catcode

changes and all tokens should not be read ahead.

There are seven ways to write a (box) (The

T&Xbook, p. 278). The \afterassignment com-

mand behaves differently with the first four and the

last three of these (box)es:

\afterassignment\t \setboxO=\boxl

results in \setboxO=\boxl \t, whereas

\afterassignment\t \setboxO=\hbox{h)

results in \setboxO=\hbox{\t h).

The macro \afterbox gives a substitute which

is equally valid for all (box)es. Its syntax is

where (argument) is an argument for an undelimited

macro parameter (see The r n b o o k , p. 204), i.e. a

single token or several tokens in explicit braces.

\afterbox puts the (argument) aside (without the

braces, if any), assigns the (box) to the register

\box\afbox, and then reads the (argument) again.

The definition must be read when @ is a letter:

\newbox\af box

\def\afterbox#li\def\afb@xargC#l)%

\afterassignment\afb@x

\chardef\nextC.}

\def\afb@x{\futurelet\next\afb@xtest)

\def\afb@xtest

~\ifcase\ifx\next\hbox\tw@\fi

\ifx\next\vbox\tw@\fi

\ifx\next\vtop\tw@\fi

\if x\next\box\@ne\f i

\ifx\next\copy\@ne\fi

\ifx\next\vsplit\@ne\fi

\ifx\next\lastbox\@ne\fi

O\errmessageCNo <box>)%

\or\afterassignment\afb@xarg

TUGboat, Volume 11 (1990), No. 4

\ o r \ a f t e ra s s ipen t \ a fbQxagarg

\f i

\setbox\afbox)

\def\afbQxagargC\aftergroup\afbQxarg)

First. \afterbox puts the (argument) into

\afbQxarg. Then the \chardef command reads a

(number) which turns out to be a (normal integer)

with a (character token) (see The m b o o k , p. 269).

As the syntax of (number) requires, w expands

tokens and looks for (one optional space) which

turns out (empty). This looks crazy. but it has

the effect of unpacking the first non-expandable

token of (box) if it was hidden behind expandable

tokens like \null or \line (or \Boxit below). This

non-expandable token's meaning is then assigned to

\next and tested by \afbQxtest. It must be one

of the seven primitives listed with the \if xs, and

the cases 1 and 2 correspond to the two behaviours

of \afterassignment mentioned above. In both

cases, \afbQxarg will reappear exactly at the time

when the \setbox assignment is finished, e.g.:

\af terbox \t \box1

results in \setbox\afbox=\boxl \t. whereas

\afterbox \t \hboxih)

first becomes . . . \hbox(\afbQxagarg h) and then

results in \setbox\afbox=\hbox(h)\t.

For example,

\def\BoxitC\hbox\bgroup\afterbox

{\mule

\dimenO=\dp\afbox

\advance\dimenO by3.4pt

\lower\dimenO \vbox

{\hrule \kern3pt

\hbox{\kern3pt\box\afbox\kern3pt)

\kern3pt \hrule)%

\mule \egroupI)

solves Ex. 21.3 of The m b o o k with \Boxit<box>

instead of \boxit(<box>), and \Boxit<box> is

itself a (box), so that \Boxit\Boxit<box> makes a

double frame. The macro \framedhbox defined by

\def\framedhboxC\Boxit\hbox)

can be used exactly like the primitive \hbox:

It can also be \raised, or assigned to a box register,

and to or spread can be specified.

o Sonja Maus

Memelweg 2

5300 Bonn 1

Federal Republic of Germany

An Indentation Scheme

Victor Eijkhout

Indentation is one of the simpler things in w: if
you leave one input line open you get a new para-

graph, and it is indented unless you say \noindent.

And if you get tired of writing \noindent all of the

time, you declare

at the start of your document. Easy.

More sophisticated approaches to indentation

are possible, however. In this article I will sketch

a quite general approach that can easily be incor-

porated in existing macro packages. For a better

appreciation of what goes on, I will start with a tu-

torial section on what happens when rn starts a

paragraph.

1 Tutorial: paragraph start

When w is not busy typesetting mathematics, it

is processing in horizontal mode. or vertzcal mode.

In horizontal mode it is putting objects - usually

characters-next to each other: in vertical mode it

is putting objects - usually lines of text - on top of

each other.

To see that there is a difference, run the follow-

ing pieces of code through 7&X:

\hboxCa)

\hboxCb)

\bye

and

a

\hboxCb)

\hboxCc)

\bye

You notice that the same objects are treated in two

different ways. The reason for this is that 7&X starts

each job in vertical mode, that is, stacking material.

In the second piece of input saw the character

'a' before it saw the boxes. A character is for TEX
the sign to switch to horizontal mode, that is, lining

up material, and start building a paragraph.

Commands that can make l&X switch to hor-

izontal mode are called 'horizontal commands'. As

appeared from the above two examples characters

are horizontal commands. but boxes are not. Let us

now look at the two most obvious horizontal com-

mands: \indent and \noindent.

1.1 \indent and \noindent

\indent is the command to start a paragraph with

indentation. 7&X realizes the indentation by insert-

