
7 Bits Good, 8 Bits Bad or "The Eight-Bit Blight"

Malcolm Clark
Polytechnic of Central London
malcolmcQmole.pcl.ac.uk

Brian Hamilton Kelly
Royal Military College of Science
Shrivenham
texQrmcs.cranfield.ac.uk

Niel Kempson
25 Whitethorn Drive
Cheltenham
texQrmcs.cranfield.ac.uk

Abstract

Inter-networking and e-mail systems can usually be relied upon

to permit faithful exchange of seven-bit ASCII data. Transfer

of eight-bit binary data is not so reliable, especially when the

data must traverse gateways or be exchanged between different

system types.

Until now, it has been possible to exchange sources

of papers by electronic mail without much difficulty. Now that

w and its relations support eight-bit input their source files

will now suffer the same problems as binary data.

The proliferation of electronic archive services has high-

lighted the need to be able to exchange binary data between

disparate systems, often connected via gateways. The authors

introduce a new file-encoding standard that meets this need and

far surpasses existing schemes.

Reliable and faithful exchange of binary files be-

tween computers over networks is a well-known

problem, especially if the computers use differ-

ent operating systems and are connected to differ-

ent networks via a gateway. Unfortunately inter-

networking and electronic mail are very much chil-

dren of the '60s: they might have had to wait

until the '70s for their naissance, but their pro-

genitors were mentally locked-in to the concept of

the 7-bit ASCII code for conveying textual informa-

tion. The l&X community has long been aware of

this problem when trying to exchange "machine-

independent" .dvi files and font-related data such

as . t f m and . pk files. I t has sometimes been possi-

ble to exchange this binary data by using encoding

schemes that allow the data to be represented using

a subset of the seven-bit ASCII character set.

Academics and authors in many fields have

hitherto been able to pass . t e x files back and forth

by electronic mail- apart from a few minor quirks

and blemishes, such w source files pass unharmed

across the planet's networks. Problems are encoun-

tered when mail passes through certain gateway ma-

chines that introduce irreversible character corrup-

tions. Particularly notorious is the Janet/Bitnet

gateway, which has the unfortunate habit of con-

verting '-' to '"' and '-' to '%'. Since it leaves '%'
itself unaffected, this makes recovery of the original

file a non-trivial exercise. It sometimes also changes

the brace characters 'I)' into odd characters above

128; this is particularly embarrassing, of course, for

. t ex files!

For some years, many users, particularly

those working in languages other than English, and

thus familiar with character set encoding contain-

ing other than the basic ASCII set, have been agi-

tating for TEX to be able to handle input in their

528 TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

7 Bits Good, 8 Bits Bad or "The Eight-Bit Blight"

mother tongues, using their own languages' charac-

ter sets. In 1989, Knuth [I] announced v.3, and

implementors world-wide beavered away to bring

each implementation up to date. v.3 now sup-

ports eight-bit character sets and so . t e x source files

are now effectively 'binary' files and will therefore

suffer from the same exchange problems experienced

with . d v i files.

All those authors who had previously been able

to/cooperate, despite being separated by hundreds

or thousands of miles, might once again be forced

to entrust floppy disks to the vagaries of the world's

postal systems (although one shouldn't underesti-

mate the bandwidth of the Royal [or other] Mail

system).

Unless or until the various e-mail protocols, net-

works and software are converted to support uncor-

rupted transmission of characters codes '040. . '1 76

and '241. . '376, it will have to become the norm

for . t e x sources to be encoded for transmission by

e-mail.

The Aston Archive

All three authors are volunteer assistants to Peter

Abbott in running the world's principal repository

of m - r e l a t e d material at Aston University [2] in

Birmingham. The archive holds several hundred

megabytes of text and binary files including

0 program sources for w, METAFONT, DVI

drivers and many other utilities;

0 binary executables for a variety of popular oper-

ating systems (e.g., Atari, Macintosh, MS-DOS,

UNIX, VAX/VMS and VM/CMS);

0 METAFONT sources for Computer Modern and

other fonts;

0 binary font files (mainly . t f m and . pk) for a

number of different output devices;

0 text, macro and style files.

The archive provides access to these files via the

following services:

0 NIFTP1 from Janet hosts. Typically 300

megabytes of data are transferred every month;

Network Independent File Transfer Protocol -

in the UK, one does not perform the pseudo-login

that Internet users are accustomed to using with

the FTP protocol. Instead, one issues a 'transfer

request' for a file to be sent to or from the re-

mote machine - the transfer itself takes place asyn-

chronously. One nice consequence is that such trans-

fers can be queued for overnight execution, leaving

daytime bandwidth free for e-mail and true remote

interactive logins.

this would probably be much greater if we were

not limited by the bandwidth of our 9600-baud

connection to Janet.

FTP from Internet hosts. At the time of writ-

ing, the Internet connection has been approved

and should be available by the third quarter of

1991.

Interactive browsing service via Janet PAD;

including the facility to send files out using

NIFTP (and later FTP).

Interactive browsing service via dial-up modem

lines, including the facility to download files us-

ing Kermit and similar protocols.

An e-mail file server that typically sends 150

megabytes of data per month to sites all over

the world (though predominantly to EARN/

Bitnet sites).

A magnetic-media distribution service via sur-

face carriers. Copies of the entire archive have

been sent to embryonic communities in

Czechoslovakia, Hungary and Poland.

We have experienced many problems trying to sup-

port all of these file types, operating systems and

access methods. The e-mail file server clearly needs

a reliable method of encoding files if its many cus-

tomers are not to be denied access to the non-text

files in the archive.

Binary files such as .pk font files are stored

in different ways to accommodate the requirements

of the different operating systems supported. Cur-

rently we maintain multiple font directory trees for

the Macintosh, MS-DOS, UNIX and VAX/VMS,

with all the attendant problems of synchronization,

disk space and archivists' time. We need a single

storage format that allows export to all of our sup-

ported operating systems.

Specification for a Coding Scheme

In mid-1990, the archivists came to the conclusion

that a universal encoding scheme was required to

accommodate the many different kinds of file and

file organizations that needed to be supported by

the archive.

Niel Kempson formulated the first draft of this

specification in mid-1990; the requirements of the

encoding scheme may be summarized as follows.

Preserving File Structure. It is insufficient, es-

pecially for an archive holding binary files for a vari-

ety of machine types, merely to encode data simply

as a stream of bytes:

TUGboat, Volume 1 2 (1991), No. 4-Proceedings of the 1991 Annual Meeting

Malcolm Clark, Brian Hamilton Kelly and Niel Kempson

0 Virtually all operating systems2 make a distinc-

tion between binary and text files. so the coding

system should recognize and maintain this dis-

tinction.

0 UNIX and most PC-based operating sys-

tems treat files as streams of bytes with no

further structure imposed. On the other

hand, certain widely-used operating systems

(e.g., VAX/VMS and VM/CMS) have record-

oriented file systems where different types of file

are stored in a format appropriate to the type

of

For these operating systems, we consider it

essential that the encoding scheme identify, pre-

serve and record the most commonly used file

organizations. The decoding program should

be able to use this information to create the

output file using the organization appropriate

to the operating system in use. If the informa-

tion is of no consequence to the receiving sys-

tem, the default file structure (if any) should be

created. If the encoding system does not have

structure in its files, the receiving system may

provide suitable defaults automatically. In all

cases. the programs should permit the user to

override or supplement file structure informa-

tion.

Whenever possible, these details of structure

should be determined automatically by the en-

coding program; at the very least, an indication

of whether the file is text or binary shall be pro-

vided (even under an operating system such as

UNIX that need make no such distinction for its

own use), to allow decoding to an appropriate

file organization on those systems that do make

such a distinction.

Coding Scheme. Whatever method is used for en-

suring that encoded data can be e-mailed:

It should be possible to specify the coding table

to be used to encode the data. The coding table

used should be recorded with each part of the

encoded data.

* If a recorded coding table is found while decod-

ing, it should be used to construct an appropri-

ate decoding table. Simple one-to-one character

corruptions should be corrected as long as only

one of the input characters is mapped to any

one output character.

The recommended encoding uses only the fol-

lowing characters:

UNIX i s a notable exception to this rule.

It is argued that the increase in efficiency more

than offsets the increase in complexity.

+-0123456789

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Such an encoding has been shown to pass suc-

cessfully through all the gateways that are

known to corrupt characters.

Integrity of Encoded Data. We want to ensure

that the whole encoded file passes through the e-mail

network.

Encoded lines should be prefixed by an appro-

priate character string to distinguish them from

unwanted lines, such as mail headers and trail-

ers. Whilst not essential, this feature does assist

the decoding program in ignoring these spuri-

ous data.

Lines should not end with whitespace charac-

ters, as some mailers and operating systems

strip off trailing whitespace.

The encoding program should calculate input

file parameters, such as the number of bytes

and CRC (cyclic redundancy check), and record

them at the end of the encoded data.

The decoding program should calculate

the same parameters from the decoded data

and compare the values obtained from those

recorded at the end of the encoded data.

files

e

Making Files Mailable. A mechanism is needed

to overcome some gateways' refusal to handle large

The encoding program should be able to split

the encoded output into parts, each no larger

than a maximum specified size. Splitting the

output into smaller parts is useful if the en-

coded data is to be transmitted using electronic

mail or over unreliable network links that do

not stay up long enough to transmit a large file.

The recommended default maximum part size

is 30kBytes.

The decoding program should be able to decode

a multi-part encoded file very flexibly. It should

not be necessary to:

1. strip out mail headers and trailers,

2. combine all of the parts into one file in the

correct order, and

3. process each part of the encoded data as a

separate file.

Miscellaneous. Further considerations include:

* Support for character sets other than ASCII is

essential if the encoding scheme is to be useful

to IBM hosts. The encoding program should la-

bel the character set used by the encoded data,

530 TUGboat: Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

7 Bits Good, 8 Bits Bad or "The Eight-Bit Blight"

and both encoder and decoder should enable

the conversion between the local character set

and another character set. For example, a user

on an EBCDIC host should be able to encode text

files for transmission to another EBCDIC host, or

to convert them to ASCII before encoding and

transmission to an ASCII host. Similarly, that

user should be able to decode text files from

ASCII and EBCDIC machines, creating EBCDIC

output files.

0 Where possible, the original file's timestamp

should be encoded and used by the decoding

program when recreating the file; this will per-

mit archives to retain the originator's time of

creation for files, and thus permit the users

(not to mention the archivists) to identify more

clearly when a new version of a file has been

made available.

The encoding and decoding schemes should be

able to read and write files compatible with one

or more of the well-established coding schemes.

The source code for the programs should be

freely available. It should also be portable and

usable with as many computers, operating sys-

tems and compilers as possible.

The Search Commences

Naturally, the first step was to examine the exist-

ing coding schemes in comparison with the above

ideal specification. Such schemes fell into two broad

classes: portable schemes, which were intended to

permit the encoding of files on any computer archi-

tecture into a form that could be transmitted elec-

tronically, and decoded on the same or a different

architecture; and platform-specific schemes. which

provided rather better support for transferring files

between two computers using the same architecture

and operating system.

Portable Coding Schemes. The most commonly

used coding schemes supported by a variety of plat-

forms are:

boo

0 UUcode

0 XXcode

Most implementations of these schemes known to

the authors are designed for use with stream file sys-

tems. These programs have no means of recording,

let alone preserving, record structure and are thus

unsuitable for our purposes. This is not surprising

since UUcode and its mutation, XXcode, were devel-

oped specifically for exchanging files between UNIX

systems. In fairness to these schemes, they are well

suited to the transmission of text files and certain

unstructured binary files.

Standard UUcode encodes files using characters
' ' . . '-' of ASCII. This can result in one or more

spaces appearing at the ends of lines; some mailers

decide that this is information not worth transmit-

ting, with consequent inability to reconstruct the

original file.

Files containing characters such as ' : ' are often

irreversibly corrupted by mail gateways; this prob-

lem led to the development of XXcode, which uses a

rather more robust character set, namely:

+-01234567890

abcdef ghij klmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTWWXYZ

The encoding table used is recorded with the en-

coded data to allow the detection of character cor-

ruptions, and the correction of reversible character

transpositions. Whilst superficially a step forward,

XXcode offered little more than most existing ver-

sions of UUcode; which already supported coding

tables. Its major contribution was in formalizing

the encoding table, and in particular its default ta-

ble was proof against all the known gateway-induced

corruptions.

Platform-Specific Coding Schemes. Encoding

schemes have been developed to support transfer of

files possessing some structure that therefore can-

not be reconstructed correctly when encoded by the

portable schemes. When the encoding and decod-

ing programs of such a platform-specific scheme are

each used on the same computer and operating sys-

tem type, files may be encoded and transmitted with

a great deal of confidence that the decoded file will

reproduce the original's structure and attributes in

their entirety.

Examples of such programs are TELCODE and

MFTU for VAX/VMS, NETDATA for IBM mainframes,

and StufFit and MacBinary for the Macintosh. But

these programs have the major disadvantage that

they have each been implemented only on the sin-

gle architecture for which they were designed; thus

the only two of these schemes that could be used

on the VAX/VMS-based Aston Archive would be of

minimal interest elsewhere!

The Archive's content is in some respects ar-

tificially inflated by the presence of . hqx files for

Macintoshes, .boo for MS-DOS, etc., which have to

be held in pre-encoded form for transfer by those

requiring them.

TUGboat, Volume 12 (lggl) , No. 4 -Proceedings of the 1991 Annual Meeting

Malcolm Clark, Brian Hamilton Kelly and Niel Kempson

VVcode is Born

Realizing that none of the existing portable schemes

were close enough to our ideal, an early version

of our specification was circulated on various mail-

ing lists by Niel Kempson towards the end of 1990.

When the anticipated 'nil return' was all that re-

sulted, Brian Hamilton Kelly went ahead and cre-

ated a rudimentary VVencode by modifying an exist-

ing VAX-PASCAL implementation of uuencode. Af-

ter generating the companion VVdecode, he then re-

implemented the programs in Turbo C under the

MS-DOS operating system on the IBM-PC, and

thereby was able to prove that the new scheme was

both viable and sufficient.

A Product ion VVcode. Following the minor fea-

sibility study, Niel Kempson re-engineered the pair

of programs from scratch (adding certain features of

the evolving specification), paying particular atten-

tion to making the code4 portable across a wide vari-

ety of operating systems. Particular care was taken

to avoid the use of supposedly standard C functions

that experience had shown behaved differently un-

der individual manufacturer's implementations, or

were even non-existent in some. Therefore, the code

may sometimes appear to be performing certain op-

erations in a very long-winded way: it's very easy

to look at it and say, "Why didn't the author use

the . . . function, which does this much more effi-

ciently?" But this function may not even exist under

another implementation of C, or it may behave in a

subtly different manner.

The core functions of VVcode are implemented

as a collection of routines written in as portable a

fashion as possible, with a separate module of a few

routines that are operating-system ~pecif ic .~ Port-

ing VVcode to a new platform should require only

that this latter module be re-implemented, in most

cases by adapting an existing one.

VVcode implements all of the features listed in

the specification, apart from the ability to generate

UUcode- and XXcode-compatible files. However, the

decoding program is backwards compatible and can

decode files generated by UUcode and XXcode.

Argumen t s against VVcode. When the advent

of the VVcode system was first aired in the vari-

ous electronic digests, some heated debate followed,

along the lines that a new encoding scheme was un-

necessary, since UUcode/XXcode sufficed for them.

That written by BHK was, in Niel's words,

"PASCAL written as C"!

Such a s file 110, timestamping, command-line

or other interface, etc.

However, all these correspondents were UNIX users

who had interpreted the 'VV' as meaning 'VAX-to-

VAX' (by analogy with 'uu"), and thus felt that

such a scheme should be private to VAXen. The

authors' response is that the encoding scheme was

intended to support the needs of archives like As-

ton's, and as such, must provide:

1. an automated tool (it would be somewhat dif-

ficult to expect our users to be able to tell the

encoder what sort of file structure it is handling,

when this concept is entirely alien to many of

them) ;

2. facilities to encode binaries for many operating

systems;

3. mail server features, such as splitting of large

files; and

4. operation across the widest possible combina-

tion of platforms.

The overhead of using the VVcode system is at most

a couple of hundred bytes over using UUcode, and

the extra functionality and universality with respect

to UUcode or XXcode thereby comes almost for free.

Availability of VVcode

At present, the VVcode system is only available in C,

but it has been shown to run successfully on the fol-

lowing combinations of hardware, operating system,

and compiler:

Un ix

0

0

0

0

0

0

0

DEC Mips; Ultrix (BSD 4.2); native C

HP9000; HPUX 6.5; native C and GNU C

IBM RS-6000 (BSD 4.3); native C

ICL DRS6000 (SPARC); System V (Re1

4); AT&T C

Masscomp 5600; native C

MIPS MI2000 (MIPS R3000); RiscOS

4.51; native C

Sun; SUNOS 3.x and 4.0.3; native C and

GNU C

Sun Sparcstation 1; SUNOS 4.0.3; na-

tive C and GNU C

VAX/VMS

All VAXen; VMS 5.2-5.4-1; VAX/C v3.0-

v3.1-51 and GNU C

MS-DOS

0 IBM PS/2, PC (and clones); MS-DOS

3.3, 4.01; Borland Turbo C 1.5, 2.0 and

Turbo C++ 1.0

'V' was chosen simply because it followed 'U';

at one time, we had seriously considered calling it

YAFES - Yet Another File Encoding Scheme!

532 TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

7 Bits Good. 8 Bits Bad or "The Eight-Bit Blight"

IBM PS/2, PC (and clones); MS-DOS 3.3,

4.01; Microsoft C 5.1 and 6.0

VM/CMS

VM/CMS; Whitesmith C compiler v1.0

(This implementation was ported by

Rainer Schopf; basing it upon the UNIX

implementation, this took him about one

day.)

Macintosh

At the time of writing (May 1991), John

Rawnsley of the University of Warwick

had commenced development of a Macin-

tosh port. This will encode the resource

and data forks in a manner that will per-

mit the former to be ignored by non-

Macintosh systems.

Who's Going to Use VVcode?

Obviously, since the whole concept was invented by

the archivists a t Aston, the Aston Archive will use

VVcode when honouring e-mail requests, and the

programs will also be available to browsers calling

from sites without a binary NIFTP capability.

Rainer Schijpf has indicated that he will sup-

port VVcode on the Heidelberg server, as has George

Greenwade at Sam Houston State University in

Texas. Nelson Beebe intends to provide it as part of

the TUGlib archive at Utah.

Naturally, all of these archives will also provide

the sources of the programs, and will, wherever pos-

sible, provide complete distribution kits for transfer

by (N1)FTP; these kits will include "load-and-go"

executables for at least MS-DOS, UNIX, VAX/VMS

and VM/CMS. The MS-DOS kit will be included

on all physical distributions of TEX for the P C from

Aston.

References

[I] Knuth, Donald E. "The New Versions of TF-X and

METRFONT." TUGboat 10#3, pages 325 - 328,

1989.

[2] Abbott, Peter. "The U K W Archive at the Uni-

versity of Aston." TUGboat 10#4, pages 675 -

680, 1989.

[3] Abbott, Peter. "A UK-Based TEX Mail Archive

Server." TUGboat 9#3, pages 263 - 264, 1988.

TUGboat, Volume 12 (1991), No. 4 -Proceedings of the 1991 Annual Meeting

