
Typesetting SGML Documents Using TjjX

Andrew E. Dobrowolski
ArborText, Inc.

internet: aedQarbortext . corn

Abstract

Since its publication as an international standard in 1986, the

Standard Generalized Markup Language (SGML) has become a

preferred document-markup standard within many industries.

Many users have developed their own document type definitions
(DTDs) that define the elements (tag sets) for their documents.

However, if SGML is to become a universally accepted standard

of document interchange, then a standard way of specifying

formatted output and a means of producing that output will be

needed.

The U.S. government's Computer-aided Acquisition and

Logistic Support (CALS) initiative selected SGML as the standard

for text interchange. The output specification section of the

CALS standards proposed the Formatted Output Specification

Instance (FOSI) as the means of formatted output specification

interchange.
TJ$ can be used as the formatting engine to implement

FOSI-based formatting. But without extending w, not every
FOSI formatting request can be fulfilled. Conversely, certain

capabilities cannot be formulated in terms of FOSI

characteristics. However, a FOSI/m-based formatting system

would be a major advance towards fulfilling the document

interchange needs of a growing community of SGML users.

Document Interchange Standards

In the past ten years, w has become a well known

and widespread language for typesetting technical

documents. From its original base of universities

and colleges, it has spread to such an extent that

people in industries with only incidental needs for

publishing have heard about it. A large part of

w ' s appeal comes from its portability, since the

program is in the public domain and has been

ported to quite a number of operating systems.

There is no standard for the way a document

is "marked up"; this is dependent on the macro

package used. Given the right macro package

and fonts, the formatted output of two different

implementations on two different machines will

produce identical results.

By contrast, generic markup systems identify
document structures without making assumptions

about the end application of the document. This

makes the same document useful to various pro-

grams and for various applications. Generic markup

has been around in several flavors for over ten years.

These dissimilar flavors were a hindrance to its util-

ity. To remove this hindrance and to promote the

portability and acceptance of generic markup, an

international standard (IS) specification for generic

markup was established in 1986. Since then, SGML

(Standard Generalized Markup Language) has be-

come extremely important to industry, especially in

areas where huge quantities of data have created a

document-management nightmare. Today a large

number of programs can read and write SGML on a

variety of platforms.

The U.S. government's Computer-aided Acqui-

sition and Logistic Support (CALS) initiative gave

SGML additional clout by selecting SGML as the

standard of text interchange between the Depart-
ment of Defense and its subcontractors. However,

SGML contains no information pertaining to the

printed representation of a document or to the
meaning attached to the markup. The compan-

ion standard to SGML that addresses standardized

formatting specifications, the Document Style Se-
mantics and Specification Language (DSSSL), is

TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting 409

Andrew E. Dobrowolski

still in the design stages. It is not expected to be-

come an international standard until at least 1993.

For this reason the output specification section of

the GALS standards proposed the Formatted Out-

put Specification Instance (FOSI) as the means of

output specification interchange.

SGML and FOSI Structure: An

Overview

All SGML documents must conform to certain rules

that are defined partially by the standard and

partially by a prolog to the document; this prolog
is called the document type definition (DTD). The

DTD defines the "elements" of a document; in a
document instance, these are marked off by start

tags and end tags. For example. a hypothetical

section might be marked up like the fragment in

Listing 1. Here, <head> and </head> (pronounced

"head" and "end head") are start and end tags that

delimit the head element. The parent of head is

section and its siblings are the two para elements.

A DTD also defines what "attributes" are

associated with an element. An attribute is an an-

notation that appears in the document instance and

augments the information provided by the markup.

Attributes appear within an element's start tag. If

the element "head" has an attribute "id" for use in
cross references, then that attribute can be assigned

some value in the document instance, for example:
<head id="overviewU>.

It is important to note that SGML allows the
same element to appear in many contexts within a

document structure. The same markup can be used

to describe a chapter head, a section head. and even
a table head. At some point, a distinction must be

<sec t ion>

<head>SGML and FOSI S t r u c t u r e :

An Overview</head>

<para>Al l SGML documents must conform t o
c e r t a i n r u l e s t h a t a r e def ined p a r t i a l l y by

t h e s t a n d a r d and p a r t i a l l y by a p ro log t o t h e

document, which i s c a l l e d t h e document type
d e f i n i t i o n (DTD).</para>

<para> I n a d d i t i o n t o being f i r s t o f f t h e

s t a r t i n g blocks t o becoming a n a t i o n a l

s t a n d a r d , t h e FOSI i s a l s o t h e most
manageable, </para>

< /sec t ion>

Listing 1. A Document Instance Fragment.

made between these various contexts, at least for

the purpose of formatting the document. But since

the DTD also restricts the context in which any

element may appear, the task of defining the style

of every element in every one of its possible contexts
is fairly well defined. Thus, a FOSI will not define

the formatted output style of a document element

but of an element in context (or e-i-c).

Many industries have developed DTDs that de-

fine the elements (tag sets) used to mark up their

documents. Before SGML becomes a universally

accepted standard of document interchange, one of

SGML's conlpanion standards for output specifica-
tion must be fully implemented. TEX could be the

engine in the implementation, the means of produc-

ing standardized output for any SGML document.
The ultimate goal would be to make this process
automatic for the arbitrary DTD document. The

only information that would need to pass from one

site to another in order to print a document would
be the document instance, the DTD, and an output

specification.
It appears that of all proposed output specifica-

tion standards, the FOSI is the closest to becoming
a recognized standard. In addition, the FOSI speci-

fication is the easiest to implement. A FOSI is itself

an SGML document that conforms to the Output

Specification (OS, or outspec) DTD. But, instead of
being made up of parts, chapters, or sections, a FOSI

is made up of divisions that describe page models
and the output format of each of the document's

elements.
There are six major divisions in an output spec-

ification instance: the security description (secdesc).

the page description (pagedesc), the element style

description (styldesc), the table element style de-
scription (tabdesc), the graphical element descrip-

tion (grphdesc), and the footnote area description

(ftndesc). All but the pagedesc and styldesc are

optional. There still is no definition for the output

style of mathematical formula elements. Thus, the

mathematics must either be passed through in the

native language of the formatting system and trans-

lated into the native language by the translator,
or the output specification for the mathematical

elements must be "hard wired" in the formatting

system.
The style description is the most important di-

vision of the outspec for simple text documents. The

styldesc contains a document description (docdesc),

zero or more environment descriptions (envdesc),

and at least one formatting specification for an
e-i-c. It is in these subdivisions that special FOSI

elements called categories appear. Each category

410 TUGboat, Volume 12 (1991). No. 3-Proceedings of the 1991 Annual Meeting

Typesetting SGML Documents Using

SGML and FOSI Structure:
An Overview

All SGML documents must conform to certain

rules that are defined partially by the standard
and partially by a prolog to the document,

which is called the document type definition
(DTD).

In addition to being first off the starting

blocks to becoming a recogized standard, the
FOSI is also the most manageable.

Figure 1. Typeset Document Fragment.

provides data on a different aspect of the formatted

output. There are 24 categories (with names such

as font, leading, etc.), and each of these has from

one to 13 attributes. These. when fully specified,

exactly define the formatting aspect with which

their category is concerned. These attributes are

called characteristics, of which there are 128 in

total. Once values for all the characteristics of

any given e-i-c have been determined, it should be
possible to define the appearance of that e-i-c on

the printed page.
The categories control the font, leading, hy-

phenation, word spacing, letter spacing, indents.

horizontal justification, highlight. change marks,
prespace, postspace, page breaking, vertical justifi-

cation, text breaking, spanning, page borders, rul-

ing, character fill, enumeration, print suppression.
automatic generation of text, automatic generation

of graphics, the saving of text for cross reference,

and the use of text saved for cross reference.

As mentioned above, the elements that may

appear in a styldesc are docdesc, envdesc, and e-i-c.
The characteristics of the docdesc define the style of

the overall document and specify the default values

for characteristics that are needed but not specified

in an e-i-c. When used in this way, the docdesc is

called the default environment. The envdesc section

defines "named" environments that may be used

instead of t he default environment. The actual style

definition for an element in a particular context in

the document instance is given by an e-i-c. The

SGML terminology for an element's name is the
generic identifier (gi). An e-i-c specifies an element,

its context, and its occurrence within that context

Listing 2. FOSI fragment.

by using the gi . context, and occur attributes, as
shown in Listing 2.

Furthermore, this FOSI also uses the occur at-

tribute of an e-i-c to make a distinction between the

output format of the first and non-first occurrences
of the para element. The paragraph indent of the

first para within a structure is zero, while non-first

paragraphs have an indent of 15 points and an
additional prespace of 6 points. Figure 1 shows

the formatted output from the document instance

fragment. Characteristics not explicitly listed in

the e-i-c definitions default to the values sepecified

in the docdesc (not shown).

SGML-to-'I@ Translation

As with most SGML documents, the FOSI must first

be read by an SGML parser or a dedicated program,

and then translated into a form suitable for the

formatting engine. Likewise, the document instance

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Andrew E. Dobrowolski

must be translated by some process into a suitable

form.

Translating a FOSI into 'lJ$ creates a series of

macro definitions that appear in the TEX translation

of the document instance. Given a suitable starting

set of macros, it is possible to load the new macro
definitions produced automatically from the FOSI

translation and to format the document.
Because the output specification for a given

document element is context sensitive, either the
translation process or 'TEX must track and differen-

tiate between differing contexts. To make the work

of the macro package easier, the context sensitivity

should be built into the translation process. In

fact, W ' s limited look-ahead capability dictates
that the translation will be context sensitive. 'lJ$

cannot recognize when an element is the last of

its kind within the parent structure, but some oc-
currence conditions require that this distinction be

made. For example, the last item in a list may need

to inhibit a page break from separating it from the

second-to-last item. This occurrence recognition

must therefore be done by the translation process.
The easiest way to accomplish this is to give

each e-i-c in the FOSI a distinct name and to use

that name, when appropriate, in the translation of

the document instance. Listings 3 and 4 show the

translation into TFJ of the document instance from

Listing 1 and the sample FOSI fragment of Listing 2.

Notice how the two sets of <para>. . .</para> tags

are translated according to their occurrence.

\section{)
\sectionhead{)SGML and FOSI Structure :
An Overview\endsectionhead{)

\firstpara{)All SGML documents must
conform to certain rules that
are defined partially by the
standard and partially by a

prolog t o the document, which is
called the document type
definition (DTD) . \endf irstpara{)

\nonf irstpara{)In addition to being
first off the starting blocks to
becoming a recognized standard,
the FOSI is also the most
manageable. \endnonfirstpara{)

Listing 3. Translation of Document Fragment.

Implicit Specification of

Characteristics

Let us examine more closely the specification of the

first para e-i-c in the FOSI fragment in Listing 2.
It explicitly sets the values for the f i r s t l n charac-

teristic of the "indent" category and the s t a r t l n

and endln characteristics of the "textbrk" category;
however, it neglects to explicitly define many other

important formatting parameters. Nowhere was the

font mentioned, or the prespace, or the justification

(quadding). Nonetheless, as the formatted output

suggests, these characteristics are well defined. In

general, one of two implicit methods is used to de-
termine the value of a characteristic not mentioned

explicitly in an e-i-c.
One of the methods is inheritance. An un-

specified characteristic that is inherited assumes the

value it had at the level of its parent. In the

example of Listing 1, the font family of the head is

inherited from its parent (the section). If the font
family characteristic for section is changed, this will

in turn affect the head. This method of determining

the value of an unspecified characteristic has to

Listing 4. Translation of a FOSI Fragment.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Typesetting SGML Documents Using

be explicitly requested by setting the i n h e r i t at-

tribute of the affected category to one, as shown in

Listing 2. Explicitly assigned characteristic values
override inherited values.

The usual method of determining the value of a

characteristic that has not been explicitly assigned

in the e-i-c is to look up its value in an environ-

ment. Every FOSI contains the document environ-

ment that explicitly mentions all 128 formatting

characteristics. This is the default or "unnamed"

environment normally used when a lookup must be

done. For example, the prespace category (presp)

was entirely omitted from the declaration for head

in Listing 2. So head was typeset using the default
environment's prespace characteristic values, which

were all zero.

Other "named" environments may optionally

be defined in the envdesc section. For an e-i-c's
characteristic to be looked up from a named envi-

ronment, the structure in an e-i-c that contains the

categories (charlist) must set its envname attribute

to the environment name.

Of the two methods of determining the values
of unspecified characteristics (inheriting from a

parent and defaulting from an environment), the

inheritance method is the more problematic. Since

the value of an inherited characteristic cannot

be decided until the element's context is known,

current characteristic values must be tracked by

m. Fortunately, W ' s grouping already works
this way. The characteristic values that must be
looked up from an environment can be added to the

definitions in the FOSI as part of the translation

process, or the lookup can be performed by TEX as

part of the typesetting process.

Typesetting the Translated SGML

Document

The processes performed by m that culminate in

typesetting the translated document can be sepa-

rated into two levels. The top level is responsible
for the inheritance, lookup, and setting of charac-

teristic values, as discussed above. Macros, such as

\ s t a r t e i c and \endeic used in Listing 4, group

these values to restrict inheritance, while \ font ,
\ t ex tbrk , and the like are used to set explicit

overrides.

The bottom level is responsible for the setting

of TEX parameters. This layer is invoked at the
end of every start tag. In Listing 4, it is the call to

\e iccont e n t that triggers this processing.

Various optimizations are possible. For exam-
ple, if the only category changed since the last text

fragment is the leading category (which controls

line spacing), then there is no reason to change the
current font. By keeping track of the categories that

have not changed since the last time the bottom

layer was called, we save the overhead of computing

any parameter that relies entirely on those
unchanged categories.

Whatever optimizations are used, it is required

that the current font, horizontal and vertical sizes,

margins, indent, interword space, page and line

breaking, and baselineskip parameters be properly

set. Some non-primitive parameters (for example,

for controling the number of columns) must also

be set. In addition, certain commands, such

as inserts, vertical and horizontal skips, counter

increments, macro text expansions for typesetting,

and so on, must be executed at the appropriate
times. All of these actions must conform to the

current settings of the FOSI characteristics.

Sometimes the correspondence between FOSI

characteristics and W capabilities is close, and a
simple transformation will allow T@ to produce

the results specified by the FOSI. An example

is the transformation of the pre-space category

(presp), which controls vertical spacing. Presp

contains characteristics, called minimum, nominal,

and maximum, that specify the whitespace that

precedes an e-i-c. The actions T@ must take can

be defined by means of the transformation:
Cpresp nominal=x minimum=y maximum=%> +--+

\vskip z plus min(% - x, 0) minus min(x - y, 0)

The indent category's characteristics are also

easy to transform into w. There are only three

indent characteristics, all of which are dimensions:

leftind, rightind, and firstln. It is possible to
specify that a dimension be absolute or relative

to its current value. So, assuming that the con-

ditional \ i f abs l ind is set to false if the leftind

is specified relatively and to true if it is specified
as an absolute value, and likewise assuming that

\ i f absr ind and \ i f absf ind are appropriately set,

the transformation becomes:

<indent left ind=x right ind=y first ind=z> +-+

\ifabslind\else\advance\fi\leftskip x

\ifabsrind\else\advance\fi\rightskip y

\if absf ind\else\advance\f i\parindent (z - x)

Another fairly straightforward transformation

between FOSI characteristics and T@ parameters

is the font assignment. The FOSI font category

includes characteristics named style, famname, size,

posture, weight, width, allcap, smallcap, and offset.
A table lookup scheme can be devised that allocates

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 413

Andrew E. Dobrowolski

the fonts found on the user's system based on the

classification given by these characteristics. I would
exclude allcap and offset from the classification, as

these are not really properties of a font.

Difficult Transformations

The three transformations listed above are among

the easiest. The characteristics affecting one TEX
parameter do not necessarily come from a single

category. Sometimes the transformation into TEX

requires a long and complex algorithm. The

seemingly simple request would

cause an element to interrupt the current column
mode in a multicolumn document, balance off the

existing text on the page, switch into one-column

mode for the duration of the element contents, and

then switch back into the interrupted-column mode.
These changes would also affect any parameter

whose setting depends on the \hsize. Nonetheless,
multicolumn algorithms exist and the required side

effects of switching column modes can be rigorously

determined. So the span characteristic can, in

theory, be implemented.
There are characteristics that are impossible to

implement in w : The category that controls page

breaks (keeps) contains the characteristics keep,

widowct, and orphanct. The first is a toggle (0

or 1) that inhibits the breakability of the entire

e-i-c. The other two are integers that control the
number of widow or orhan lines to be kept together

if the element must break. But T$$ only provides

widow/orphan control for page breaks between the

first two and the last two lines of a paragraph. So
the best transformation is only approximate:

The lettersp category concerns kerns between

letter pairs. can be made to do "track

kerning" in limitied circumstances, but the process
is inefficient and the conditions under which it can

be used are limited. There seems to be no point in

attempting to implement this capability.

The quadding category controls justification of

lines within an element. Among other possibilities,

it gives the FOSI designer the power to request that

paragraph lines be ragged on the inside margin only

or the outside margin only. But 7&X cannot justify

the lines of a single paragraph based on which page

they fall on, at least not in a one-pass system. This

is yet another esoteric request that would not cause
a book designer to lose any sleep if it were glossed

over.
Still other FOSI capabilities can be imple-

mented by using extensions to 7&X. The category

that controls underscoring and overstriking (highlt)

may require a TEX extension or some driver assis-

tance via \ spec i a l commands. This same category
gives control over the background and foreground

colors.

TEX Capabilities That Are Not

Expressible In a FOSI

It is interesting to note that just as there are FOSI

capabilities that are not possible to implement by

TEX, there are TJ$ capabilities that cannot be
described in a FOSI.

The p l a i n . tex package already provides many

typographical parameters to which the FOSI de-

signer will have no access. Only parameters and

capabilities that may need to be used in the middle

of a document will be listed, since the macro pack-

age can set up the other parameters easily. The list
includes: horizontal kerning; \vboxes and \hboxes
to any fixed dimension; the capabilities of \ h a l i p .

\val ign, and simple tabbing; mathematics and all

parameters related to mathematics; \ looseness,

\par shape, and the paragraph- hanging parameters;

\ l i ne sk ip and \ l i ne sk ip l imi t control; \ topskip;

multilingual hyphenation patterns; marks of various

flavors; and \xspaceskip, although interword space
can be adjusted.

Adding macro packages increases the short-

comings of the FOSI. Add to the list: mixed

multi-column modes on one page, although span-
ning to one column is possible; precise control

of figure placement and many insert categories;
side-by-side paragraphs; "picture" modes; multiple

levels of footnotes; marginal notes; paragraph line
numbering. The list goes on.

In general, the major advanced capabilities

that has over FOSI capabilities are macro ex-

pandability, contitionals, and the ability t o define

custom output routines. For the time being, these

are not serious limitations. It is more important to

find an interim solution to the arbitrary DTD for-
matting problem. The FOSI-driven TE_rC formatting

engine provides a good solution. Its wide accep-

tance in the SGML community would also mean a

wide acceptance of w, a factor that would weigh
strongly in W ' s favor.

414 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

