
VJhen and METAFONT Talk:

Typesetting on Curved Paths and Other Special Effects

Alan Hoenig
Department of Mathematics. John Jay College

17 Bay Avenue, Huntington. NY 11743 US

(516) 385-0736

Bitnet: a ~ h j J Q c u ~ ~ ~ v ~

Abstract

It is possible to successfully ask TEX to typeset text on arbitrarily

curved pat,hs provided one enables and METAFONT to

conlmunicate with one another in an appropriate manner. In

this paper, we describe one method for setting text on convex

paths. One possible application of this work may be toward

setting text along the circular rims of institutional seals so

that Tfl can include such images in letterheads. We discuss

this particular example in some depth, and also present some

examples of fanciful typesetting made possible when and

METAFONT communicate with one another.

Old Work

A few years ago. I thought of a way to get

to typeset around a circle. and I spent some time

teaching this trick to [I]. Here's the basic idea.

I imagined inscribing a regular n-gon inside the

circle. The generality of METAFONT makes it easy

to generate n rotated fonts, so that characters from

the ith font would sit properly on the z t h face of my

polygon. For purposes of testing. I used cmbxl2 as

the font t o rotate. and I let n = 32.

Many people to whom I showed the end prod-

ucts were kind enough to applaud my feeble efforts.

But the kindest of all was one individual who scold-

ed me in no uncertain terms. I had arranged things

so that each letter was centered on its polygon

face. This might have been acceptable had I used

a monospace font (such as cmt t lo) , but with a

variable spaced font like cmbxl2, it looked just like

someone had used a computer to set type around a

circle. This critic closed his review with a scathing

remark: Postscript could do better!

A new and substantially more acceptable but

different approach has since occurred to me. and

it's this set of techniques that I will discuss today.

Communication between TEX and METAFONT.

Here's the main problem. TEX would be better at

typesetting in nonlinear baselines if it were able to

do more advanced mathematics. M ETA FONT does

do that kind of mathematics. and therefore one

immediately envisions some kind of dialog between

FIGURE 1. Curved typesetting.

the two programs as they generate and exchange

information with one another. But METAFONT's

file handling abilities are greatly crippled when

compared to TFJ. Other than font pixel files, font

metric files, and log files, METAFONT cannot write

files. Furthermore, although M ETAFONT can read

files, it cannot read records individually-it's the

whole file or nothing. Therefore. we have to design

an inter-program dialog with some care.

554 TUGboat, Volume 12 (1991). No. 4 P r o c e e d i n g s of the 1991 Annual Meeting

Typesetting on Curved Paths and Other Special Effects

In an earlier presentation [2], I had suggested

that METAFONT might embed useful geometric in-

formation for later use by T&$ in the \fontdimen

parameters which accompany any font. This ap-

proach works, but more extensive testing revealed

a problem. The syntax given in both The m b o o k

and the METRFONTbook suggests that there is no

upper limit on the number of font dimens in any

font. but the METAFONT program has a hard-coded

upper limit of 50 such parameters per font. It

looks like a simple change to the WEB listing could

augment this value, but few users, not including

myself, have ready access to WEB source (or to WEB

expertise) which readily compiles in their operating

system.

A better solution appeals to METAFONT's abil-

ity to store character kerning information in the tfm

file. With old METAFONT, we were limited to 256

kern pairs, but the new limit with METAFONT2.7 is

something like 32k or 64k-a much greater number

of pairs.

Here's one way to pass numeric information

from METAFONT to using kern information.

Suppose, for example, we need to tell 'Q-$ that the

result of some important calculation is -14.2 pt.

(There's nothing significant about this value; it

was chosen purely for illustrative purposes.) We

ask METAFONT to record that the kern between

character 0 and character 1 (say) of a font be that

value (-14.2 pt, in this example). The METAFONT

code to do that is something like

ligtable 0: 1 kern -14.2pt#;

which should appear somewhere in the METAFONT

driver program for this font.

How can TJ$ read that information? Let's
suppose that the files special. tfm and special .pk

store the information on this font. We can say

something like

\f ont\specf ont=special

in the T)jX source document. To access this value:

we say something like

\setboxO=\hbox<specfont\char0 \char13

\setbox2=\hboxC\specf ont

\hbox(charO I\hboxC\charl 3)

in the TEX file. The difference in the widths \wdO

\wd2 of these two boxes will be the number TEX
needs. In practice, it is straightforward to create

batch files which perform the necessary METR-

FONTing and which then invoke T&$, and to embed

the details of the computation into a macro so this

cumbersome routine is workable.

With these observations in hand, let's return

to the main problem-how to typeset along any

convex path, not just a circle.

Convex Paths

Here's just a quick word on what we mean by a

convex path. Imagine that a tiny bug drives along

the path in a tiny car, and that the bug has started

at the beginning of the path and proceeds towards

the endpoint without backing up at all. We say the

path is convex wherever the bug turns the steering

wheel to the right to stay on the path.

For typesetting purposes, convex paths are

easier to treat then concave paths. The bottoms of

adjacent letters butt against each other on convex

paths. (On concave paths, the letters butt together

at the top, and there are thorny problems in

deciding where the bottoms of the letters will sit.

That's why this paper only considers convex paths.)

A Three-Pass Method

I have been able to adapt a three-pass method

to accomplish curvilinear typesetting. The end

product of the three passes will be a new special

purpose font, created just for the purpose of printing

the curvaceous message. The characters in the font

will not be those of the standard font layout, but will

rather be the individual characters of the message,

each one rotated or transformed by an amount

appropriate for its position along the curved path.

Step One. The first pass belongs to TJ$. In

this step, T&$ creates two files for later use by

META FONT.

TJ$ first examines the text of curvilinear

material but does not typeset it. Rather. it

examines each character, places it in an \hbox to

measure its width, and writes this information into

a file which METAFONT will use in the second step.

'Q-$ has adequate file handling abilities, so it's a

straightforward task to create a file whose lines and

records conform to METAFONT syntax. This file

will be widths. mf .
By the way, the code to examine individual

characters in a list is identical to the answer to

exercise 11.5 in The m b o o k [3, page 671. (The

only difference lies in the definition of the macro

\\, which I used to write the width information to

an auxiliary file.)

The second file is letters .mf and contains

essentially the individual characters of the message

TUGboat, Volume 1 2 (1991)' No. 4-Proceedings of the 1991 Annual Meeting

Alan Hoenig

FIGURE 2. Text for a university seal.

gussied up with additional information that META-

FONT will soon use to create the letter with its

special rotation.

Step Two. In the second step, we invoke META-

FONT. We make METAFONT use the information

in the output file widths.& to create new

information for the actual typesetting that rn will

do in the third (and final) step.

In our new font, I use \char0 to store the

representation of the actual curved path. (In this

way, we can typeset the path as well as the curved

text if we so choose.) Since I don't expect there to

be any normal kerning between adjacent characters

on a curved path, I am free to use all kerning

information to transmit information back to rn
for the next step.

Now, for each character in your message,

METAFONT performs a sequence of steps which

I describe below. The purpose of these steps is

to determine the position of this letter on the

path, and t o record this information for subsequent

retrieval by 'l&X.

First, suppose the point zo marks our current

position on the curve. Then we use METAFONT's

extraordinary solve macro to find the point zl such

that the length of the chord z1 - zo is the same as

the width of the current character. (We need to

decrease the tolerance when using solve. Plain

METAFONT sets t olerance=O . I ; we need a smaller

value, such as tolerance=O. 0001.) Using other

METAFONT commands, we can easily determine the

angular orientation of this chord, and therefore the

amount by which the letter should be rotated. (The

chord is really an imaginary construct. We never

draw it.) Really, we are approximating our path

by a series of straight chords which "inscribe" the

convex pa th such that each face of this approximate

path will be the exact width of each letter or

character.

will eventually need two pieces of infor-

mation about each letter in order to typeset it

properly-the x- and y-offsets of that letter from

the previous letter. We can pass this information

to m using kerning pairs.

But there are other modifications we need to

make to some standard METAFONT files such as

romanu . mf (and other program files). romanu . mf
contains the actual programs which METAFONT

uses to construct the uppercase characters. This file

is organized as a series of programs for each letter,

one after the other. Here's how the program for A
begins and ends.

cmchar "The letter A";

beginchar (" A " , 13u#, cap-height#, 0) ;

. . .
penlabels(0,1,2,3,4,5,6); endchar;

The ellipsis denotes the details of the construction

which are not important here. We add some lines

to each such program as follows.

def A- (expr rotation-angle) =

currenttransform:=identity rotated

rotat ion-angle;

def t-=transformed currenttransform

enddef ;

cmchar "The letter A";

beginchar (" A " , 13u#, cap-height#, 0) ;

...
penlabels(0,1,2,3,4,5,6); endchar;

enddef ;

That is, we embed the program for each letter

within a METAFONT subroutine. (As you can see,

METAFONT macro syntax differs from that of m.)
The argument for each subroutine is the angle by

which the letter needs to be rotated.

METAFONT finishes the second stage by using

these subroutines together with the letter informa-

tion passed to it in \letters .mf (first step using

m) to generate the special purpose font.

Step Three. Finally, it's m ' s turn again. 7&X

takes your message text, and, character by char-

acter, it typesets it on the page. It extracts the

information from the kerning pairs in the way I

suggested earlier.

A frivolous example of curved typesetting ap-

pears in figure 1. The typesetting appears twice-

with and without its path. If you look closely, the

curved typesetting here looks a bit ragged. The

reason is that I used an inferior method, in which it

was only possible to get letters to match rotations

to the nearest "quantum" of rotation, which was

360132. In the improvement to that method, which

is the method I just discussed, the fit would be

better.

Getting to the Point. There is one application

which may be of interest to curvilinear typesetters.

556 TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

Typesetting on Curved Paths and Other Special Effects

FIGURE 3. An approximation to T . We generate

this figure by simultaneously rotating and magnify-

ing numerals. We see the figure with and without

its path. I
Many university and institutional seals employ

some text in a circle, such as that of the University of

Maryland (shown in this article). It's a reasonably

straightforward matter to use METAFONT to create

the pictorial elements of any seal, but we would

still need a method of setting the text, and of

centering this text along the circle. (It's reasonably

easy to perform this centering since we can take

advantage of the circle's having constant curvature

everywhere.)

Figure 2 displays a circular inscription suitable

for a TfjX letterhead. Unfortunately, the rest of the

pictorial components for the seal have not yet been

M ETAFONTed!

Breakthrough in Thinking

It was hard for me to get used to the idea that a

single font could be created for one-shot uses. I am

used to thinking of fonts as sacred collections that

can serve long and honorably in many contexts.

Nevertheless, if special-effect typesetting is needed,

these special-purpose, one-shot fonts may be quite

versatile.

It is clear, for example, that we can vary

other of METAFONT's parameters at the time we

FIGURE 4. With the proper instructions, META-

FONT will gladly generate these curve letters. We

can adjust the rise of the "sunrise" as we see here.

do the rotation. In figure 3, we see the effect of

simultaneously shrinking each numeral a t the same

time as we rotate it.

But of course, we need not rotate the characters

at all. We can use METAFONT to apply whatever

special effect we want, character by character.

Figure 4 is one such example.

Bibliography

1. Hoenig, Alan. "Circular reasoning: typesetting

on a circle, and related issues" TUGboat, 11#2

(June 1990), pages 183 - 190.

2. Hoenig, Alan. "Labelling Figures in 'lJ$ Doc-

uments" TUGboat, 12#1 (March lggl) , pages

125 - 129 (W 9 0 Conference Proceedings).

3. Knuth, Donald E., The m b o o k . Reading, MA:

Addison-Wesley, 1984.

Copyright 1991 Alan Hoenig

TUGboat, Volume 12 (1991); No. 4-Proceedings of the 1991 Annual Meeting

