
Automatic Conversion from a Scientific Word Processor to T&K 

Cay S. Horstmann 
Department of Mathematics and Computer Science 

San Jose State University 
San Jose, CA 95192-0103 

408-942-0461 
Horstmann Software Design Corporation 

Four North Second Street, Suite 500 

San Jose, CA 95113 

408-298-0828; FAX: 408-298-6157 

Internet: horstmanmsj sumcs . sj su. edu 

Abstract 

In this paper. we report on our experience with a utility 

which converts files written with the ChiWriter scientific word 
processor into files. With this converter, it is feasible 

to write a manuscript in a "what-you-see-is-what-you-get" 

(WYSIWYG) fashion, with all fonts, special symbols, mathematical 

formulas, and tables displayed correctly on the screen during 
editing, and to translate the document into for publication. 

This method has several advantages over typing straight 

code. The word processor is easier to learn, and it is easier to 

revise material that is displayed on the screen without codes. 
We describe design decisions and limitations of our approach. 

Features of Our Word Processor 

The CHI2TEX converter described in this article, 

as well as ChiWriter, its source word processor, 

are commercial products, available from Horstmann 
Software and its international distributors. Many 

of the issues raised here apply to the design of 

conversion software from another scientific word 

processor as well, and some observations are valid for 

general purpose word processors. In the following, 
we will refer to ChiWriter and CHI2TEX as "our 

word processor" and "our converter". 

Our word processor has the same capabilities as 
most other word processors: cut and paste, search 

and replace, spell checking, etc. The program 

operates in graphics mode. Characters in fonts 

such as bold, italic, Greek, and math are displayed 

correctly on the screen. A number of features dif- 
ferentiate it from general purpose word processors. 

Multiple superscripts and subscripts (e.g., x:, xnk)  

are supported and correctly displayed. Mathemat- 

ical formulas, such as fractions or integrals, can be 
entered as easily as any other text. There is no 

separate "equation mode" and no code language for 

formula entry. No separate preview step is required 
to view the formulas in the doucment. 

An older version of our word processor (Chi- 

Writer version 3) employs a very simple imaging 
model. It essentially simulates a "golf ball" style 

typewriter. The cursor can be moved vertically in 
half-line steps and characters can be placed any- 

where on the screen. The user must piece together 

fractions, roots and integral symbols from building 

blocks. While this is quite intuitive for the typist 

and requires essentially no learning curve, it is 
tedious to revise formulas entered in this way. For 

a review of this program, see Milne. 

It was quite a challenge to write a converter 
that is able to scan mathematical formulas in this 

pictorial representation and translate them into the 
logical structure required by TEX. Our scanning 

algorithm translates most formulas surprisingly well; 
and, with a bit of foresight, formulas can be entered 

to be translated reliably. 

The current version of the program (version 4) 

supports automatic formatting of mathematical 
structures. For example, when editing a fraction, 

the numerator and denominator are continuously 

centered and the fraction bar expands or shrinks to 
the correct length. Because the word processor is 

aware of the structures, no guessing is required for 
conversion of mathematical structures and tables. 

TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting 471 



Cay S. Horstmann 

User Acceptance 

Users who wrote their document using the Chi- 

Writer word processor, then translated it to rn 
and shipped a paper copy of the word processor 

document together with the 'l&X file, were generally 

happy. Publishers would have preferred a higher 
quality file but resigned themselves to a one- 

time cleanup. The advantage of this approach is 

clear. The publisher doesn't have to rekey the text 

or cope with an alien word processor format, and 

the author doesn't have to spend much time proof- 

reading since the text, mathematical symbols, and 

special fonts remain untouched by human hands. 
We would have preferred it if users could have 

shipped a disk with their word processor file to 

the publisher and have had the publisher enter the 
corrections arising out of copy-editing into the word 

processor file before conversion to w. The word 

processor file could have been handed back to the 
author, preserving the changes for future revised 

editions. Unfortunately, publishers are reluctant to 

learn yet another word processing system. 
Users unfamiliar with T@ expected that the 

converter and rn could be used like a printer 

driver. They were very disappointed because they 

had hoped they could completely avoid learning 

m. However, some knowledge of T@ is required 

to produce a professional looking document with 

our converter. Some users abandoned rn as a 

result; most others learned enough Pidgin 7&X to 

succeed. 

Other users were reluctant to fix conversion 
errors in the original word processor file, changing 

them in the file instead. As a reason, several 

cited the amount of time required to enter the word 
processor, making the change there and running the 

document through the converter before executing 

the program and the previewer. Some of those 

users finally abandoned our word processor and 

became experts. 

Most users wrote with the word processor as 

long as possible. Upon completion of the document, 
they performed a trial conversion and then corrected 

converter errors and added tags as required by the 

submission style of the publisher. These changes 

were made in the word processor file. Additional 

markup was performed by the publisher in the rn 
file. 

Conclusion 

Many potential users are justifiably concerned 

about the drudgery of entering Q X  codes in an 

ASCII file. Our conversion utility, which translates 

files written in a scientific word processor to T@. 
offers a number of advantages. The learning curve 

for the word processor is not as steep as for raw T@. 

Fonts, special symbols, and mathematical structures 

show up correctly on the screen. This eases editing 

and revising. Typical keyboarding errors, such 

as omitted backslashes or mismatched $ signs, are 

reduced. Documents can be translated into different 

dialects of m. A special font is translated directly 
to rn code to access any features not provided by 

the word processor or converter. 

There are several disadvantages. The conver- 

sion pass takes time. The user must cope with 

converter errors and limitations in addition to rn 
problems. Sometimes the converter's actions are 
difficult to predict. The converter cannot detect 

math mode with perfect accuracy, and the user must 
occasionally work around the converter's guesses. 

The code generated by the converter contains a few 

nonstandard macros which may need to be modified 

by publishers. 
Most users of this system felt that we are on 

the right track. They need Tfi$ output, either for 

high quality printing or for submitting documents. 

They find that the problems of the conversion pass 

are far outweighed by the convenience of not having 

to manually enter the codes, and the ease of 

making revisions in the WYSIWYG screen display. 

Bibliography 

Adobe Systems Inc., Postscript Language Reference 

Manual. Addison-Wesley, 1985. 

Knuth, Donald E. The !&$book. Reading, Mass.: 
Addison-Wesley, 1986. 

Milne, J. S. "Four Word Processors with T@ 

Capability", Notices Amer. Math. Soc. 37, pages 
1018- 1022, 1990. 

478 TUGboat, Volume 12 (19911, No. 4 -Proceedings of the 1991 Annual Meeting 


