
A Structured Document Preparation System- AutoLayouter

Version 2.0 -An Enhancement for Handling Multiple Document Types

Takashi Kakiuchi, Yuki Kusumi, Yoshiyuki M i y a b e , and Kazu Tsuga
Information and Commu~lications Research Center

Matsushita Electric Industrial Co., Ltd

1006 Kadoma, Kadoma-shi, 0sa.ka 571 Japan

+81 6 906 4873; FPIX: +81 6 906 8148

Internet: kakiuchiOis1 .mei. co. j p

Abstract

Autohyouter is a structured document preparation system used

to increase efficiency in creating and reusing designed documents

in offices. AutoLavouter consists of an easy-to-use structured

editor and a Japanese Brn i -based formatter. With a struc-

tured editor. the user need not be concerned with page layout,

and can concentrate on creating the contents of the document.

Because these documents are structured logically, they can be

easily reused or processed further by other systems.

At the 1990 TUG meeting, we presented AutoLavouter ver-

sion 1.0. Since then we have been improving the system to han-

dle more complicated document structures, such as are defined in

SGML. In this paper, we describe 1) new document structures,

and 2) ALmY, which directly formats structured documents.

Introduction a text formatter for logically structured documents.

Recent research projects on document processing

have been directed a t structured document rep-

resentations, such as SGML. The basic idea of a

structured document is to separate a document into

structure and content; its contents are the11 ex-

tracted in terms of its structure. In an SGML doc-

ument. the structure is defined explicitly as a DTD

(Document Type Definition), so that docume~its cre-

ated with the same DTD are interchangable. Such

a structure can also be used by a document process-

ing system to retrieve the required information: for

instance, the title, author, and date of technical re-

ports can be retrieved through their structure and

merged into a summary table.

The structured document representation, espe-

cially the logically structured one, is essential to

making the best use of electronic documents. We

can store documents in electronic format, and load

and print them on paper, using conventional word

processor o r desktop publishi~~g systems. These doc-

uments cannot be processed by other systems, how-

ever, unless the logical meanings of their contents

are preserved, because there is no other way to iden-

tify the contents. Because of its abstract, declarative

language, LATEX is often referred to as an example of

L A W is used as a document preparation tool by

computer software engineers because they can use

any editor and can concentrate on a document's con-

tent and structure without paying any attention to

its physical appearance.

In Japan. the advance of word processing tech-

nology has meant that business documents are pre-

pared and stored electronically, but they must also

be kept in printed form. The format of most

Japanese business documents separates items with

rule lines. This standardizes the items to be writ-

ten and determines the text area available for each

item. Japanese word processors possess some char-

acteristics for editing these forms: they draw ruled

lines and insert text in the area surrounded by the

rules. However, this augmentation of rule-line func-

tions has made it too complex to manage document

files and to reuse document contents. As a result, a

document must still be managed in the printed form,

even though it is stored in an electronic format.

To solve these problems, we have developed a

structured document preparation system, Aut0La.y-

outer, whose objective is to increase efficiency in

creating and reusing preformed documents. Auto-

Layouter consists of a structured editor for creat-

ing SGML-like documents, and a Japanese U W -

422 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Structured Documents Preparation System AutoLayouter Version 2.0

based formatter called A L W . In the subsequent

sections of this paper. we mainly describe the docu-

ment structures of Autolayouter and implementa-

tion issues of A L W formatter.

Document Structure

M o d e l for d o c u m e n t s t ruc tu res . The AutoLay-

outer document is represented as a tree structure

(like an SGML document). Each node of the doc-

ument tree, except the leaves, has a unique label

associated with it. Each leaf of the document tree

contains a text segment, which is represented as a

sequence of characters. Any node may have an ar-

bitrary number of attributes, represented as nanie-

value pairs.

A major difference between the document

structure of AutoLa.youter and SGML is that the

AutoLayouter document has two structure layers,

namely the logical structure and the generic struc-

ture. The logical structure presents the logical

meaning of the subsidiary structures) such as a

sender's address in a letter, which is specific to

the document type. Meanwhile, the generic struc-

ture presents such document elements as itemiza-

tion, enumeration, and centering; these are common

to all document types. The generic structure is al-

ready predefined in the system. When defining a

document structure, we need only specify the logi-

cal structure.

The whole document structure is organized as

follows: the root node of the document belongs to

the logical structure, and its descendents can belong

to either the logical structure or the generic struc-

ture, according to the document definition. ,4 node

in the generic structure cannot be a parent of any

nodes in the logical structure; furthermore, siblings

belong to t h e same structure. In the rest of the pa-

per, we shall call nodes in the logical structure the

logzcal element, and nodes in the generic structure

the yenerzc element. Each leaf of the document is a

special generic element that has only a text segment

with no children.

A model for structured documents should be

well designed so as to make it easy to define docu-

ment structures and maintain consistencies between

them, and also to make its editor easy to use. In

SGML, the whole document structure must be de-

fined explicitly, using the fully expressive descrip-

tion language. This means that to use the contents

of one document in another document, the structure

definitions of both must be strictly consistent with

each other; such consistency requires as much effort

as does designing database schemes. Furthermore,

Feb. 1, 1991

Since our company ...

i t e m - the names of ...

i t e m - hardware capability

Generic S t ruc tu re

F i g u r e 1: Document structure in AutoLa.youter

the user interface of a structured editor tends to be

awkward because of the flexibility required to handle

all document structures as generated from their def-

inition. This is analogous to the trade-off between

functionality and ease of use involved with most sys-

tems, namely, easy-to-use tools can be achieved a t

the expense of their restricted flexibility.

In Au toLa.youter, the generic structure is pre-

defined in the system and only the logical structure

needs to be defined; thus, only the logical part of

document structures should be designed to be con-

sistent. Moreover, we can build in the easy-to-use,

dedicated user interface for editing the generic struc-

ture; this contributes to efficiency in preparing doc-

uments. A user often manipulates a document's

generic structure rather than its logical structure,

because most of the logical structure can be gener-

ated automatically by the system and need not be

modified so frequently, whereas the generic struc-

ture contains the text segments t o be typed and the

layout directives that have been left to the user.

E x a m p l e 1: 171 Fig. 1, a wh.ole document structure

is divided into two structures. The document defi-

nition specifies only the loyical structure, shown on

the left side.

By using these two-layered structures, the de-

sign of a new document type is accomplished by

defining a logical part of its structure and specify-

ing how to present each element on paper (layout

definition).

S t r u c t u r e def ini t ion. The structure definition of

a document type is a generic specification of its log-

ical structures. This is expressed in a grammar for-

mat that specifies the logical elements and the order

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Yuki Kusumi, Yoshiyuki Miyabe, and Kazu Tsuga Takashi Kakiuchi,

- I Document File I

Structure S t r u c t u r e d

Edi tor

TEX File rn
F o r m a t t e r

F i g u r e 2: System diagram of AutoLayouter

in which they will be generated. Each rule consists

of a left-hand side, which corresponds to a node,

and a right-hand side, which is a restricted regular

expression that specifies occurrences of its children.

System Structure of AutoLayouter

S y s t e m overview. As shown in Fig. 2, AutoLay-

outer consists of two subsystems: a structured edi-

tor and a formatter.

The structured editor interactively performs

the following tasks:

interprets a structure definition;

edits documents, showing the structure ele-

ments to be inserted and checking illegal struc-

ture modifications;

loads and saves structured document files; and

converts documents into files.

Meanwhile, the formatter completes the following

tasks:

typesets the document in accordance with the

layout definition (style file) provided; and

converts formatted documents (dv i file) to a

specified device such as a bitmap display or a

Postscript printer.

In t h e rest of this section, we describe vari-

ous file formats used by subsystems, to clarify their

roles.

F i l e fo rmats . The data files used in the Aut0La.v-

outer are the following:

a structure definition file (for input);

a structured document file (for input and out-

put):

a TbJ file (for output) .

a layout definition file (for input); and

A structure definition &file. In order to define docu-

ment structures (see the Model for Document Struc-

tures subsection on previous page), we use the fol-

lowing three syntaxes in the structure definition file.

1. A node having children of logical elements is

defined using the following syntax:

< !node node-name ,
regular-expression>

This implies that if a node is a logical element,

then its siblings are also logical elements.

2. A node having children of generic elements is

defined using the following syntax:

< ! l e a f node-name , type>

4 type field, which can be genera l , s t r i n g ,

or i n t e g e r , and so on, specifies a selection

of the subsidiary structures that are allowed

t o appear; g e n e r a l allows any kind of generic

elements, including any nested sub-tree of a

generic structure; s t r i n g allows only a string

in a text segment; and i n t e g e r allows only an

integer in a text segment.

3. Attributes associated with a node are defined

using the following syntax:

< ! a t t r i b u t e node-nam,e,

{attr-type

attr-n,ame = initial-value}*>

An attribute, which may be used for any pur-

pose, is typically used to define layout param-

eters, such as paper size or column layout.

In addition to the syntax above, we provide a

syntax just for the structured editor; this is used

to define help information for each logical element.

such as a label string shown in the editor.

E x a m p l e 2: The following is the structure defin.i-

t ion of the document shown i n Fig. 1.

<!rootnode LETTER, DATE.FRDM.BODY . . . >
<!leaf DATE, date>

<!node FROM, COMP.SECT.NAME . . . >
<!leaf CDMP, string>

. . .
< !leaf BODY, general>

The structured editor reads the structure defi-

nition file in two situations: when selecting a docu-

mrnt style to create a new document, or when start-

ing to edit an alrrady existing document.

424 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Structured Documents Preparation System Au toLayouter Version 2.0

A structured document file. We directly represent a

tree structure of an AutoLayouter document as a

block structure of the document file. A node n ,

whose children are m l ,mz,...,rnk, is expressed in the

document file as follows:

A TEX file. The structured editor outputs a rn
file to be input by the formatter. The rn
file represents the tree structure of the Auto-

Layouter document directly, converting a node

<n>, ..., </n> in the document file into a TEX com-

mand \beginnodein), ..., \ e n d n o d e m , and replac-

ing all special characters with TEX commands

that generate the characters literally.

\beginnode{n) [attribute-list] C
\beginnode{ml) [attrzbute-lzsU

The name of the root node that appears a t the

top of the file identifies the style file.

A layout definition file. The layout definition file is

a style file. This will be discussed later.

Editing the Structured Document

As shown in Fig. 3, the editing field of the struc-

tured editor is divided into two areas, a style field

and a layout field, that represent the logical struc-

ture and generic structure, respectively. Usually we

use different labels in different structures, such as

text labels in style field and graphical labels in lay-

out field. This makes it easy for users to see the

whole document structure. In each field, we use in-

dentations t o show substructures.

When creating a new document, one selects the

document type, such as l e t t e r or r e p o r t . The edi-

tor reads the structure definition file of the specified

document type and generates a mandatory and min-

imum structure according to the definition rules.'

Since the mandatory structure has already been gen-

Each leaf of the logical element has a generic

element for a text segment.

r--- Style Label

t _ _ _ _ _ _ _ _ _ _ l L.. ,

Style Layout Field
Field Layout Label

Figure 3: Snap shot of editor screen

erated. one completes the document by simply typ-

ing text into each text segment.

One may insert a logical element, such as a re-

port date field, as needed, whenever it has been de-

fined as optional or is repeated in a regular expres-

sion. When the insert command is selected for the

layout field, the editor displays candidates for the

logical elements that can be inserted a t the speci-

fied position. One only needs to select a candidate

to insert it. Since only valid candidates are shown,

an illegal structure can never be generated. When

deleting a node, the editor checks whether this vio-

lates a rule; if it does, the editor displays an error

message and ignores the user's operation.

In the layout field, one can insert any generic

element a t any position, as long as the type of its

ancestral logical element is declared as g e n e r a l in

the definition. When the insert command on the

layout field is selected, the editor shows a label list

containing all generic elements.

The editor also has additional features listed

below:

Motzf as Graphical User Interface. Motif provides

a consistent look and feel in different applications.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Takashi Kakiuchi, Yuki Kusumi, Yoshiyuki Miyabe, and Kazu Tsuga

Japanese Kana-to-Kanji conversion. We developed

Japanese input as a front-end processor. Commu-

nication between this and the text editor realizes

in-line conversion of Japanese.

Operations with keys. Most commands can be oper-

ated with either a mouse or a keyboard. This satis-

fies a wide range of users, from novice t o expert.

Browsing functions. Moving around labels that

have a keyboard focus switches the contents of the

panels that display the attributes and the help mes-

sages.

Formatting with ALTjjX

AutoLayouter formats its structured documents us-

ing an original typesetter called " A L W , which

has the following features:

0 handles a tree-structured document directly;

and

0 provides ready-to-use macros to support layout

abstraction.

AL?'E)I is implemented in L A W . ' Therefore, not

only can LAmY users include their L A W documents

within an A L W document, but L A W experts can

easily describe a layout definition by using U m

commands.

We will describe our A L W in detail with re-

spect to these features in this section.

F o r m a t t i n g t r ee - s t ruc tu red documents . First,

we will explain the mechanism for mapping a struc-

ture to i ts layout. As we mentioned in the section

System Structure of AutoLayouter, a structure ele-

ment in a document is represented in the form

\beginnode{ . .) , . . . , \endnode{. .)

in an A L W file produced by the structured ed-

itor. A L W expands the two control sequences

\beginnode and \endnode in the same way that

it is used in the IPW environment, namely

\begin{. .),...,\end{. .). For instance, a structure

\beginnodeifoo} [attrzbute lzst] {

is expanded to the following:

)\endnodefoo\endgroup

This expansion indicates that the layout for a struc-

ture foo is based on the definition of two control

sequences, \nodef oo and \endnodef 00.

In th is mechanism, it should be noted that the

text segment of a structure is enclosed with the

Japanese L4?'E)I (ASCII version), to be exact.

grouping symbols { and). The braces allow the

text segment to be processed as an argument t o a

macro in some cases, or t o be laid out as text

as soon as it appears in other cases. To be more

specific, in the case where the text segment is to be

placed directly into the main vertical list, one can

define the control sequence \nodef oo as

In this case, \nodef oo works as a pre-processor be-

fore the text segment is laid out on the page. If, on

the other hand, the text segment needs processing,

or it should be saved once and laid out later, one

defines \nodef oo as

\def\nodefoo#l#2{ . . . I

This form of definition enables us to describe any op-

erations on the text segment (i.e., argument #2) in

the replacement text of the macro definition. How-

ever, note that the former form is recommended

wherever possible, because the latter form consumes

more memory.

E x a m p l e 3: Let us consider a dejlnition for a dec-

laration of the author of an article, similar to

the \author command in D m . In the BT@

a r t i c l e . s t y file, the \ au thor command is defined

as:

i.e., the \ au thor command saves its argument into

a macro \@author . In order to implement the same

function as the \ au thor command in A L W , we

define a \def \nodeAUTHOR macro for a logical struc-

ture AUTHOR as:

The mechanism mentioned above is not applied to

the outermost structure, namely \beginnode{root}

and \endnode{root), which represents the root node

of the document, because it requires extra tasks.

The \beginnode{root) command should load a lay-

out definition file and set up miscellaneous param-

eters, and the \endnode{root} command should

flush out the main vertical list and process cross-

references.

Incidentally, A L W expands attribute lists in

a uniform fashion. For instance, if an attribute list

of the structure foo appears as:

then each "attribute=value" pair is expanded into a

command \f oo@~~ttribute{vaIue}, i.e.:

426 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Structured Documents Preparation System AutoLayouter Version 2.0

TUGboat, Volume 1 2 (1991), No. 3-Proceedings of the 1991 Annual Meeting 427

To process the expanded attribute list, we must

prepare control sequences that have one argument

"\f ooQattributen for each attribute associated with

a node foo in a layout definition file.

Layout model and layout definition. When

considering a practical usage for a document prepa-

ration system that is based on a structured docu-

ment, providing a toolkit to facilitate layout defi-

nitions is indispensable. When using a document

preparation system with WYSIWYG and direct ma-

nipulation features, we can perform any page layouts

with some cumbersome efforts. Obviously, -4uto-

Layouter's automatic layout feature does not work

without a layout definition. This becomes the most

critical bottleneck in practical use.

To keep the toolkit from being complex and

confusing, i t should be based on a well-designed and

simple layout model. In A L T m , we provided two

layout models, a paragraph layout model and a form

layout model. Each tool is an abstraction of a layout

based on these models.

In the rest of this section, we present these two

layout models, as well as the way to use the toolkit

to map the logical structure element to the physical

layout.

Layout model. The sequence of words in a text

segment is broken into lines with the paragraph lay-

out model. The result of paragraph layout is a

box that might either be put into the main verti-

cal list directly, or aligned vertically or horizontally

together with other boxes before being put into the

main vertical list. In the latter case, the alignment

is performed on the form layout model. Kow, let us

see each model in detail.

Paragraph layout model. This model is provided for

the sake of putting the contents of a structure el-

ement into the heap of lines. Each text segment

in the leaf elements contains logical paragraphs.

These are put into the physical layout of the para-

graphs, whose shapes vary according to the parame-

ters shown in Fig. 4. We utilized W'S line-breaking

mechanism in implementing this model; itemizing,

centering, and flushing, for example, can be repre-

sented with this model.

Roughly speaking, this model corresponds to

LAW'S l i s t environment with only one \ i tem.

However, our model has such extended features that

we can set labels on top of the second and subse-

quent paragraphs, as well as the first one, and we

can set the arbitrary shape of any hanging indent,

and so on.

Furthermore, when both a node and its chil-

dren are laid out with this model, the margin of the

parent node is inherited by the children. This is

why the layout of nested items is guaranteed, as is

expected.

Incidentally, we furnished A L W with a com-

mand to define a structure as this model. Assume

structure foo is defined as a node laid out with

this model, then the result of \beginnodeuoo) ,...,
\endnode{foo) is put into a \vbox, such as the main

vertical list, after the text segment in the structure

has been broken up into lines.

Form layout model. This model is provided to make

forms in which boxes are aligned with each other. In

this model, the alignment of boxes is modeled as the

tree structure shown in Fig. 5(a). Each node of the

tree aligns its children either horizontally or verti-

cally. As our approach is based on my, this model

is implemented as nested \vboxes and \hboxes.

A L W also provides commands for making var-

ious boxes, as well commands to align the boxes. For

example,

a command to make a box with specified width

and height: the layout of the inside of the

box can be also specified, along with center-

ing, flushing. paragraph shape, and so on. (See

Fig. 5(b).)

0 the commands to make a box for the title and

t o specify the contents for it: the same layout

commands have the same function as above.

(See Fig. 5(c).)

In plain Tm, it is not easy to make a box with a

specified width and height, which is why we decided

to provide these commands a t the system level.

In addition, we created some commands, used

instead of \vbox and \hbox, to improve the read-

ability of the layout definition. Using AutoLayouter,

one can describe a vertical box with

instead of with

Two ways t o map a structure to its layout.

There are two ways of mapping a logical structure

element to its physical layout, namely direct map-

ping and indirect mapping, depending on how the

occurrence of the element corresponds to its layout.

Direct mappin,g. In the case of the l e t t e r or

a r t i c l e style, most of the logical elements are laid

out in the same order as they appear in a document.

Takashi Kakiuchi, Yuki Kusumi, Yoshiyuki Miyabe, and Kazu Tsuga

F i g u r e 4: Paragraph Layout Model

Label i s se t for the first

paragraph, to m a k e the \ f p indent : paragraph indentat ion.

top letter large.

\ /
\ f phangindent, \ f phangaf t e r :

.
hanging indentat ion.

The followin s a sample of paragraphs layout.

.

N o labels are set for

[RI
ecent research projects on documen

these paragraphs. ing have been directed a t a structu
ment representation like SGML, which m

contents-

I I I - w i d t h -

range .
tween baselines.

.

In Japan, most of business documents
own forms in which item are separat

lines.

.

To solve these problems, we have developed a stru
tured documents preparation system AutoLa

. outer, whose objective is

.

\epindent :

paragraph

indentat ion.

\ephangindent,

\ephangaf t e r :

hanging

inden ta t ion .

\ p a r l e f t m a r g i n :

- width +

heigLt contents-

(c) I

-

F i g u r e 5: Form Layout Model

left margin.

For these elements, we can put their contents into

the main vertical list as they appear, using para-

graph layout . In this case; assuming the name of the

node is foo, mapping is performed simply by declar-

ing the command \nodef oo and \endnodefoo for

paragraph layout. We call this direct mapping .

The sample shown above is

Example 4: Let u s consider the case where one

wants t o define the layout of the structure e lement

t o provzde a n agreement style:

(1) A member should notify the consortium

as soon as possible after modifying Au-

toLayouter.

A s s u m e that the n a m e of th is structure e lement i s

" P R O V I S I O N " . Al l that m u s t be done is to spec-

i fy the parameters t o the paragraph layout model for

PROVISION,

\parhodedef{PROVISION)%

{\fpindent\zO%

\afterparskip=.7ex plus .2ex%

\interparskip=.3ex plus .02ex)%

{increment=l;ctrlayout=hang;%

before=\bf (;after=))% counter

I)% use clef ault fonts

{showctr)% at the top of 1st pararaph

{default)% at the top of the others

skip after paragraphs.

where \parQnodedef i s the command to def ine a

structure e lement using the paragraph layout model.

Th i s definition directly m a p s the logical e l ement

" P R O V I S I O N " t o i t s layout.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Structured Documents Preparation System AutoLayouter Version 2.0

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Most generic elements, such as itemizing, enumerat-

ing, and flushing, are also directly mapped with the

\par@nodedef command.

Indirect mapping. In the case where the contents of

each structure element are laid out irrespective of

the order of their appearance, we can save the con-

tents once and lay them out later. We call this type

of mapping indirect mapping, and it applies to most

forms, the title structure of a r t i c l e , and the head-

ing of l e t t e r , for instance.

Now, let us consider this mapping with respect

to macro definitions. Assume that an element foo

is mapped indirectly, then the command \nodef oo

should be defined with the form (see subsection For-

matting Tree Structured Documents):

\def\nodefoo#l#2{ . . . I
In the replacement text of this definition, argument

#2, which contains a text segment, would be saved

instead of being put out into the main vertical list.

Only later would it be put into the main vertical

list.

Example 5: Let us consider Example 3 again.

A L W ' s toolkit provides the command that directs

an element t o save the contents of a text segment

using a macro definition. With this command, the

node AUTHOR can be defined as:

\def@nodedef{AUTHOR>{lO){>

where the first argument is the name of the element,

the second argument specifies how many occurrences

of the element can be allowed, and the last argument

holds the initial value for the element.

For each occurrence of the element AUTHOR,

\beginnode{AUTHOR), ..., \endnode{AUTHOR)

is expanded. In this expansion, the text

segment is defined as the macros \@AUTHORi,

\@AUTHORii,\@AUTHORiii ..., and so on. The roman

numerals i , ii, and iii in the name of the control

sequences stand for the order of occurrence of the

element.

Now, assume that HEAD is the parent node of

AUTHOR, then one should define \endnodeHEAD as

\def\endnodeHEAD{ . . .
\@AUTHORi

. . . 3

in order to lay out the contents of the AUTHOR

element.

Conclusion

In this paper, we have described AutoLa.youter, a

structured documents preparation system that uses

and LAmY commands for structuring and for-

matting documents. By dividing a document struc-

ture into two layers, each of which contains logical

elements and generic elements, respectively, we can

easily define the structure and layout of documents.

Furthermore, we built-in an easy-to-use, dedicated

user interface for editing the generic structure; this

contributes to efficiency in document preparation.

In a future version, we plan to develop tools for

defining the document's structure and layout, and

also document management facilities.

Acknowledgment

The authors would like to thank T . Ohno and R.

Kurasawa, who developed Japanese my.

Bibliography

Adobe Systems Incorporated. Postscript Language

Reference Manual, Second Edztion. Reading,

Mass.: Addison-Wesley, 1990.

I S 0 8879, "Information Processing- Text And

Office Systems- Standard Markup Language

(SGML)." Geneva ISO, 1987.

Knuth, Donald E. The mXbook. Reading, Mass.:

Addison-Wesley, 1984.

Kurasawa, Ryoichi. "Japanese a t ASCII Cor-

poration" (zn Japanese). Proceedings of 7&X
Users Group Japan, TX-97-5, September 1987.

Kusumi, Yuki, Takashi Kakiuchi, Yoshiyuki Miyabe,

and Kazu Tsuga. "Structured Document

Preparation System AutoLayouter - Design

and Implementation," IEICE Technical Report

OS90-23, 1990.

Lamport, Leslie. @w: A Document Preparation

System. Reading, Mass.: Addison-Wesley, 1983.

Miyabe, Yoshiyuki, Hiroshi Ohta, and Kazu Tsuga.

"Structured Document Preparation System:

AutoLa.vouter." TUGboat, 11#3, 353-358,

September, 1990.

