
Should TEX be Extended?

Michael Vulis
Micropress Inc, 68-30 Harrow Street, Forest Hills, New York. 11375 USA

718-575-1816: FAX: 718-575-8038

Bitnet: cscmlv@ccnyvme

Abstract

This article examines three problems discussed in recent issues of
TUGboat: Graphics inclusion, Font rotation, and Font selection

scheme. The author compares the traditional solutions to the

problems (pure w) to the solutions that can be obtained by

slight extensions to either the language primitives or the

driver programs. For each problem, the article shows what can
and cannot be achieved with puristic (Clean) TEX solutions;

it will also describe how the limitations can be overcome with

(Dirty) TEX language extensions and document the extensions.

Since its inception eleven years ago, has re-

mained essentially unchanged. Meanwhile, the

world of personal computing has advanced dramat-

ically.
Circa 1980, a personal computer with 64k RAM

was still considered advanced. Laser printers did

not exist. VCTordStar and Displaywrite were leaders

in word processing. TEX was a revolution.

Circa 1985. Postscript was around, but pro-
hibitively expensive. Proportional fonts were still a

novelty. Desktop publishing was yet non-existent.

Graphics was non-integratable. And shined.

Circa 1990, leading word-processors (i.e., Word-

Perfect) format text almost as well as m. and

perhaps easier. They handle graphics and tables

much better than TEX, they generate indices and

they spell check. They do not handle equations as

well as ?jEX; however. they are not far off.

Circa 1995, could become a historical
curiosity.

On Extensions

Software systems that remain unchanged are des-

tined for oblivion. has lasted this long primarily

because of its fresh start: immense superiority of

7&X over other typesetting systems. This superior-

ity is over, or almost over. To survive, needs
to evolve.

There are two ways the evolution of TEX

can proceed: either one person, possibly even the

Grand Wizard himself, can undertake serious and

continuing rewriting of the system, or this rewriting

will be done in possibly incompatible ways by

several implementors. Since the Grand Wizard has

declared his unwillingness to make any changes in

the design, the second possibility appears likely.

The goal of the community should be to ensure

that this rewriting does not get out of hand-

to define the process of directing, implementing,
documenting and sharing the extensions.

Historically. language compatibility has been

assured by language standards. The existence of

Standard (ANSI) Pascal, in particular, made TEX
itself possible. A starting point, therefore, can be

defining Standard (m 3 . 1 4 1 5 9) . m 3 . 1 4 1 5 9

will be identical to the l&X appearing in The
W b o o k . with the following change: it will imple-

ment integer register compatibility. A LT&X' can
be deemed to be a 'm', if any source file that

either starts with

\compatibility=O

\let\compatibility\undefined

or does not include any of the new keywords should

be handled identically by this TEX and m 3 . 1 4 1 5 9 .
Notice that this definition both supersedes the TRIP

compatibility test and ensures that TQX documents

can stay compatible between different systems.

On This Paper

With this definition in mind we will proceed with

the study of a few changes to that implement

some of the desirable extensions. While the size of

this paper will prevent us from presenting complete

cha,nges to the 'I'EX code, these are available from
the author (requestware). The extensions described

442 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Should TFJ be Extended?

in this paper were implemented and tested under

VTEX system (see TUGboat, August 1990). The

four extensions discussed here include:

Font rotation

* Incorporation of graphics

Automatic indices

Font selection and/or substitution

Case Study I: Font Rotation in

Of the three problems discussed in this article,
font rotation probably received the least attention.

The reason for it may be that before June 1990,

no one has realized it was possible and afterwards
no one thought it was practical. In June 1990.

Alan Hoenig opened the chapter on Font Rotation
with his beautiful examples (see TUGboat, 1990

Conference Proceedings) and closed the chapter

with a scary explanation of how they were made.

Hoenig's approach consists of generating a

series of fonts via METAFONT, one font per

required angle of rotation. For instance, to typeset

a 24-character line of text around a circle, one would
need to generate 24 variants of the original font.

Similarly, a 100-character example requires 100

pre-generated fonts. 101-character example requires

101 different fonts (gcd(100,lOl) = I) , while a

300-character can use the fonts generated for the
100-character example, but cannot be printed in

most T# versions (font -max<255). Hoenig's use

of METAFONT was forced by two distinct reasons:
drivers' inability to rotate fonts and, more to the

point, T#'s inability to position characters when

typesetting not on a horizontal line. To correctly

update the reference point, m needs to know the

sine and cosine of the typesetting angle; Hoenig

made METAFONT compute them and pass them to
T'@ as extra \f ontdimen parameters.

Hoenig's examples remain in the realm of cu-
rios, since it would not be practical to generate

many fonts each time rotation is required. Even

when drivers support font rotation (V W drivers

do and Postscript drivers can). the problem remains

as to how t o compute sine's and cosine's. While it

can be proven that macros for computing trigono-
metric functions can be written in TEX, a somewhat

easier (and much faster) way is to simply trans-
plant the relevant code (the n-sin-cos procedure)

from METAFONT into w. In V m this is done
by implementing a new \sincos primitive com-

mand and t he \sine and \cosine dimen registers.

Entering \sincosipt fills \sine with sin(lO) and
\cosine with cos(lO) (notice that one degree is one

point). These values can be now used in typesetting

computations. In addition, \special{R### ,###I is

used to tell the drivers about the desired rotation

of the font. To avoid re-computing sines/cosines in

drivers. we pass their values instead of the angle.

Finally. we will need to somewhat modify Hoenig's
macros:

{\catcode'p=12 \catcode't=12

\gdef \\#lptC#l3)%

\let\getf =\\
\newdimen\x \newdimen\cos

\newdimen\y \newdimen\sin

\def\initialize{%

\global\x=Opt\global\y=Opt)

\def\dolist{\afterassignment

\dodolist\let\next=

\def\dodolist{\ifx\next\endlist

\let\next\relax

\else \\\let\next\dolist\fi

\next)

\def\endlist{\endlist)

\def\\{\expandafter\if\space\next

\addspace\else\point\next\fi)

\newbox\spacebox

\setbox\spacebox=\hbox{\

\def\addspace{\setboxO=%

\copy\spacebox\newcoords)

\def\point#l{%

\setboxO=\hbox{#l)% for \newcoords

\setbox2=\hbox{#l)% for typesetting

\wd2=0pt \ht2=0pt \dp2=0pt

\rlap(\kern\x \raise\y \box2)%

\newcoords)

\def\newcoords{%

\global\advance\x by \cos

\global\advance\y by -\sin)

\def\angletype#i{\initialize

\leavevmode\setboxl=

\hbox{\dolist#l\endlist~\boxl~

Now. we define

\def\tryrotation#l{%

\setrotation #lpt%

\def\sinC%

\expandafter\getf\the\sine\wdO)%

\def\cos{%

\expandafter\getf\the\cosine\wdO)%

\special{R\the\cosine,\the\sine)%

\angletype{%

This text is rotated #1 degrees)%

\special{RO,O)) % Turn off rotation.

and type

TUGboat, Volume 12 (1991), KO. 3 -Proceedings of the 1991 Annual Meeting

Michael Vulis

\vskip-lcm ?hskip8cm

\font\anglefont=mvssbxl0 \anglefont

\tryrotation{60)% Remove spaces to

\tryrotation{150)% keep the reference

\tryrotation{240)% point the same for

\tryrotation{330)% all four lines

to obtain

Other examples shown in Hoenig's article can

be handled similarly.

Internals. The changes needed in the TEX program

are as follows: define new dimension parameters
\sine and \cosine (new codes are sine-code and

cosine-code) and new extension primitive \sin-

cos (using compute-sincos code) and accordingly
modify init-prim and print-cmd-chr. Procedure

do-ext ens ion receives new case:

compute-sincos:

begin

scan-normal-dimen; {angle*1000)

n-sin-cos (cur-val*16) ;

n-sin:=n-sin div 4096;

n-cos:=n-cos div 4096;

eq-word-def ine

(dimen-base+ sine-code,-n-sin);

eq-word-define

(dimen-base+cosine-code, n-cos);

end ;

where n-sin and n-cos are temporary integers

(in the METAFONT source, these were macros).
Finally, transplant n-sin-cos as well as the pro-

cedures it needs (pyth-add, make-fraction, and

take-fraction) from the METRFONT into the rn
source. This modification adds about 2K to the

TEX program.

Case Study 11: Bitmap Graphics

Inclusion

The problem. A casual study shows that about
10% of articles published in TUGboat deal with

graphics inclusion problems. This should not be

unexpected since W ' s design completely ignores

the existence of graphics. Graphics inclusion is

normally done in one of two ways: either rn
allocates space for a graphics box, sets the reference
point and passes the name of the graphics file via a

\special, or graphics are converted into . tfm/ . pk
pairs and TF-X treats them as characters. The

advantage here is that off-the-shelf drivers can be

made to print graphics; the disadvantage is the

extra conversion pass and, frequently, the need to
maintain two copies of the graphics file: in the

initial and in the pk format. Further problems arise

because of the m ' s limit on the number of fonts.

Finally, the . tfm/ .pk approach is not applicable to

vector graphics formats. The \special approach
requires a way to measure the dimensions of the

graphics images; it also assumes that the drivers

can read (and scale) graphics in several graphics

formats (PCX and TIF to start with).
A possible interface for T@ follows:

\newdimen\graphX \newdimen\graphY

\newbox\gbox % graphics box.
\def\scalegraph#l#2{%

\graphX=lin \divide\graphX by #I

\multiply\graphX by \graphx

\graphY=lin \divide\graphY by #2

\multiply\graphY by \graphy))

%Example :

% \makepicbox~300){300){test.pic)

where \graphx and \graphy hold the pixel
mensions, set by \sizegraph; \special{G.

communicates the name of the graphics file to

drivers. The parameters to \makepicbox are

di-

. . I
the

the

"natural" x- and y-resolutions of the picture; if

they match the resolutions of the device driver, no

scaling is needed.
From the TEX'S point of view, the only interest-

ing question is the implementation of \sizegraph.

There are several ways:
(1) Hardwire the dimensions inside the TEX source;

i.e.,

\def \scalegraph#l{\graphx640\graphy350)

444 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Should TEX be Extended?

Read the dimensions from an \ input file. If the

graphics are stored in graph.pic , we assume

that there is a header file graph. t e x containing

\graphx640\graphy350. \scalegraph, there-

fore. will change the file extension to . t e x and

\ input the file. The problem with this solution

is the need for the user to create and maintain
the header files. As a minimum, one would

require an auxiliary utility for determining the

dimensions of graphics (call it SIZEGRAPH)
and a MAKE program for ensuring that all

header files are up-to-date.

Implement \sizegraph as an extension prim-
itive; make \graphx and \graphy dimen reg-

isters. This is the original approach used by

V m . On the positive side, it eliminates the
need for header files; on the negative, it bur-

dens the 7&X program with the need to know
different graphics formats. Another hidden

advantage over (2) is that accumulates

names of the \ input files in its string pool;

thus in (2) the string pool is likely to over-

flow on documents that include hundreds of

pictures.

A combination of (2) and (3). Keep a stand-

alone SIZEGRAPH program and make m
invoke it whenever it needs to get the dimen-

sions of a graphics image. This appears to be

the overall best solution, since SIZEGRAPH

can now be independently maintained and the

extension to is both very small and very

general.

The \exec Extension

V m extends TEX by adding the \exec primitive.
\exec is implemented as a message command

with code 2 (code 1 is \message and code 2 is
\errmessage). \exec takes two arguments: the

external program name and the argument string.

Whenever VTJ$ encounters \exec, it stops w i n g

and invokes the external program; it resumes the

execution once it retains the control. The return

code of the external program is reported in the
\errno integer register. \exec allows the followi'ng

implementation of \sizegraph:

\def\sizegraph#l{%

\execis izegraph. exe){#l > temp. tex)%
\ i f \errnoO\input temp.tex\else ??? \ f i

)

While \exec provides possibly the best way for
passing the graphics dimensions to TEX: it can also

be used, for instance, to implement \s incos outside

of 7&X. Font substitution extensions described

below can also be done by \exec1uting lookups into

auxiliary tables. In fact, the \exec command is the

ultimate extension: most other extensions discussed

in this paper can be implemented through \exec:

at the same time \exec does not seriously infringe

on TEX syntax. As will be seen below, \exec can

even be implemented without any modifications to

whatsoever.

The discussion will not be complete without
mentioning the \command variant of \exec. Under

MS-DOS, \command passes the command string to
the command processor, rather than executing the

program directly. Thus, \command can be used to

execute internal commands.

\def\command#lC\exec
{command.com){/C #I))

Case Study 111: Automatic Index

Generation

Another logical application of \exec would be an

automated index for ?]EX. The index macros defined
in the Appendix E of The m b o o k and actually

used in formatting the Computers & Typesetting

series provide excellent tools for generating indices.

Unfortunately, these tools cannot be fully used from

inside TEX since 7&X lacks sorting abilities. Adding
sort to TEX is an extension that the author would

hardly advocate; V w ' s index is constructed by
running an auxiliary IDXSRT program via \exec

and than merging the results into the document

(IDXSRT is capable of sorting and formatting
indices in many different ways; in particular, it can

remove multiple references to the same item that

appears on one page.). The index is constructed

by first using the \icopy and \ ipu t macros, where
\ ipu t writes the argument into the index file.

together with page and/or section number; \icopy

is simply

\def \icopy#l{#l\iput{#l)]

When it is time to insert the index. we use

\merge index:

\def\mergeindex{%

\immediate\closeout\@indexfile%

\command{idxsrt \indexparams\

\Qindexname eraseme.tex)%
\ input eraseme.tex

\command{erase eraseme.tex))

where \indexparams define the switches to be

passed to IDXSRT.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Michael Vulis

Case Study IV: Font Substitution

In preparing a document, one often needs to change

the size (or the attributes) of the font, regardless

of the font used: it may be desirable to typeset

footnotes at eight points and titles at fourteen,

regardless of what font changes may appear in the

document. For instance, in preparation of this

article, the author was hoping to enter

However, the \head macro scaled the roman font to

12 points and left teletype at 10 points (see previous

page). The problem is unresolved in PLAIN m:
I4w 2.09 solves it by providing 800-line long table
of font substitutions (LFONTS.TEX) plus repeated
definitions of \ large, \huge, etc., all over the

style files. Urn's solution is only partial: it
does not support point sizes not explicitely listed
in LFONTS .TEX: neither do M w ' s tables support

non-cm fonts.

Most l&X users would find it greatly desirable
to have compact and portable definitions of \ large,

\small, etc., that will support all fonts. Since
the need to support all possible fonts precludes us-

age of I4m-s ty l e tables, the effect will be achieved

by extending m. We add new integer register

\f on tsca le . All the s e t f ont commands are pro-

cessed relatively to \ font sca le . For example, if
\ f on t s ca l e is set to 1200, \tt will invoke teletype

at 12. not at 10 points. We can now define

and so on. Notice that after setting \f ontscale we

need to reissue the last font command (\ the \ fon t)

to ensure that the current font changes.

Remark: The drawback of this definition of

\ s e t f ont s above is the loading of math fonts caused

by each font change switch regardless of whether

math fonts will be needed. An alternative is to
declare

which will eliminate unnecessary font loads but may

or may not conflict with other usage of \everymath.

Internals. \f on tsca le (and its companion \bold,

\smallcaps. \shadow, \ou t l ine , \ f i l l p a t t e r n ,
\slant, and \aspect) are simply additional integer

parameters. As mentioned above, these are added

by modifying the ini t -pr im and print-cmd-chr

routines. The standard values (set by I n i w) are

1000 for \f on tsca le and \aspect and 0 for others.
The tricky part is the modification of the

prefixed-command routine that handles font as-
signments. We start by replacing the standard

set-f ont :
define(cur-font-loc,data,cur-chr);

with

set-f ont :
define(cur-font-loc,data,

f subst (cur-chr)) ;

The f subs t procedure returns with unmodified

cur-chr if one of three events holds:

1) the program is run in Tm-compatibility mode,

where fonts cannot be substituted;
2) its argument is the nu l l fon t (cur-chr=O); or

3) all eight relevant integer registers (\ font s ca l e

through \aspect) hold default values.

If none of the above is true, f subs t retrieves

the parameters for the font-in-question, multiplies

the magnifications and the aspect ratios, adds

the slants, and applies the exclusive-or to the
remaining parameters. It next verifies that the

font with required parameters has not yet been

loaded and calls read-f ont-inf o to create it.
Finally, it returns the font number obtained from

read-font-info.

A similar change in the def -f amily subcase of
the pref ixed-command routine makes the \ t ex t -

fon t , \ s c r i p t f ont, and \ s c r i p t s c r i p t f ont rela-
tive.

Invisible fonts/color separation. An additional

benefit is the ability to implement color separation

via invisible fonts. Assuming that the \f i l l p a t -

t e rn0 is 1OOthat the \ f i l l p a t t e r n 1 is 0

446 TUGboat, Volume 12 (1991), No. 3-Procerdings of tlir 1991 Annual Meeting

Should be Extended?

\def\green{\dontprint)

\def\blue{\tprint))

to allow selective printing of color planes.

Math rules. This pattern and color selection

scheme needs a modification to be useful in math

mode, where symbols are often built from both

characters and rules. As given above, the \f i l l p

command affects only the character part, creating

misfits like

Currently, V7$@ solves the problem by defining

\def\fillp#l{\fillpattern=#l\setfonts

\special{F#l))

where \special{F#l) instructs the device drivers

to start shading rules.

Yet another difficulty is the possibility of shad-

ing that spans from one page to another. Unless the

\ spec i a l is re-issued on each page, a device driver

would not see it if it processes the second page

before the first. Solutions with different degrees of
generality are possible.

A Special Note to a Purist

Most of the extensions described in this paper can

be used without any changes to TEX program. For

instance, t o use \exec, without implementing it we

will write a loader program that traps screen and

keyboard I /O and loads TF$, waiting for infamous

! Undefined cont ro l sequence

<*> \exec

{wipef i l e l i * . log)

?

(make sure that \exec and its arguments are on a

line by itself, so they will be echoed on the next

line.) The loader now swaps TF$ out of memory,

performs the \exec, swaps TJ$ in, and inserts

d8 into the W ' s mouth to delete now-unneeded

tokens. While the author found this solution lacking

in performance, it has been tested and worked with

PC implementations of m.

A Late Note

After this paper has been presented at the TUG

conference, a couple of participants noticed yet

another usage for the \exec: as a security-breaching
vehicle. Indeed, it is possible to write a

program to write, for example, a C program. and

then \exec to compile, link and run it.

Conclusions

The author hopes that this paper will be helpful in

encouraging further development of TEX.

TUGboat, Volume 12 (1991), No. 3 - Proceedings of the 1991 Annual Meeting

