
TUGboat, Volume 13 (1992), No. 1

\def\specrm{\spectrue \selectspacing

\aftergroup\selectspacing \specroman}

% Swltch to large spacing and remember
% in \ifreset that we have to switch
% back after the group.
%
\def\setdimen{%

\fontdimen2\specroman=\specialvalue

\global\resettrue)

% Switch to normal spacing.
% If there is a call to
% \selectspacing after the group,
% there's no need to switch.

%
\def\resetdimen{%

\fontdimen2\specroman=\savedvalue

\global\resetfalse}

This macro does two things:

% I . If we have changed to larger spacing,

% we switch back to normal spacing

% (only if \resettrue).

% 2. If \ifspec is true for the

% current group we switch to

% larger spacing. (The correct \font

% change to \specroman is done

% by TeX if this macro is called

% afteragroup.)

%
\def \selectspacing{%

\ifreset \resetdimen \fi

\ifspec \setdimen \fi)

% A short test:
%
\obeylines

\ r m n o r m a l

\specrm s p e c

{\specrm s p e c

\ r m n o r m a l

\ r m n o r m a l

{\specrm s p e c}

n o r m a l

\specrm s p e c

>
s p e c

\specrm s p e c

\ r m n o r m a l

o Alan Hoenig
17 Bay Avenue
Huntington, NY 11743
(516) 385-0736
ajhj jBcunyvm

I Tutorials I
Elementary Text Processing
and Parsing in T'X
- the appreciation of tokens -

L. Siebenmann

Background

Token lists make up the material found in the upper

digestive tract of m, and token list registers are
very useful means to improve W'S digestion. I be-

gin this tutorial by showing how to do elementary
'text processing' with token lists. Then I apply

this 'token list processing' to parsing of classical

keyword syntax where the keys come in any order

and their fields (or arguments) are terminated by
nothing more than the next keyword. This pro-

cessing and parsing are simple concepts that many

m p e r t s , not to mention beginners, have largely
neglected. I find that m assimilates them well,

and hope they will see wider use in the future.

I originally explored this parsing as a possible

method to fix a subtle line-breaking bug in AMS-

TQX bibliographies that was pointed out by Barbara
Beeton in 1990. This remains a convenient example

to test methods; but in truth an academic one, since

Michael Downes [Do] has successfully fixed the bug

(for version 2.1 of July 1991) using a very different
\vbox trick proposed by Don Knuth. The general
subject of parsing in language, to which this

tutorial contributes two methods called (A) and (B)
below, was introduced by W. Appelt in his book

[APP~.
I want to thank Michael Downes. Victor Eijk-

hout, and Ron Whitney for contributing many

helpful comments as this tutorial evolved. My
ignorance and uncertainty about what all can or
cannot be found in The m b o o k was a problem

that delayed this tutorial; one remedy I enjoyed

using is surely of interest to readers of TUGboat,

namely string searches in an online version of The

 book.') Perhaps a "HyperT@? soon will
combine this brute force information processing

with The 7)$book1s beauty and readability. It will

1) The . tex file for The m b o o k can for example be
obtained by anonymous ftp from the archives

1abrea.stanford.edu

rusinfo.rus.uni-stuttgart.de

It fits on a diskette and can conveniently be used on

a microcomputer.

TUGboat, Volume 13 (1992), No. 1 63

not be long before the mass of articles in TUGboat

merits similar treatment.

Section 0. Token Lists and Registers

As reads in a file, it builds,') from the in-

coming stream of characters (or octets), a closely
corresponding stream of 'tokens', i.e., of control

sequences and characters-with-category. For exam-
ple, the ASCII characters \TeX-including spaces

after X-become a single control sequence token

representing the logo, and an ordinary (En-
glish) word becomes its usual sequence of ASCII

characters each with category 11 (= letter). The
details (worth re-reading often!) are found in The

QXbook, particularly [Chapter 7].3)
For our purposes, it is not too far from the

truth to say that a control sequence is a token

that one can specify in the input stream using a

backslash followed by a finite sequence of letters
(category 11) or a backslash followed by a single

character of another category. However, once inside

w, this control sequence name is, for efficiency,

left in a cloakroom, and, in all internal activities,

it is represented by a number of fixed length (four

or five octets). This means that a control sequence

with a long name is no harder for to manipulate

than one with a short name.

Control sequences come in many formally rec-
ognized varieties, somewhat like the professions of

man. The command \show\mycs should make TEX
tell you the 'profession' of \mycs along with some

further details: perhaps \mycs is a macro, a token
list register, a dimension register, a primitive, unde-

fined, etc. We are most concerned with macros and

token list registers. Both of these are 'white-collar
workers' that would never get down to the dirty

details of typesetting without help from typographic

'primitives' like \char and \hbox. Both have the
same sort of information content, namely a token

list, which means they are in some sense just con-

tainers holding other tokens! What makes macros
and token lists different is their syntax and activity;

for example, macros naturally expand while token

list registers are fairly inert.

Let us get down to specifics. Given, for

example, the token list produced by Plain m

2) With its 'lips', to use Knuth's helpful digestive tract
analogy. Token list manipulation is done in m's
'mouth' and so could be called 'mastication'.

3) In the absence of more explicit indications, citations
in square brackets refer to The Wbook.

reading C\TeX) i s useful , as every program-

mer knows. we can define a macro called \mymacro

whose content or 'expansion' is this token list, by

typing

\def\mymacro({\TeX) i s useful)

Check this by executing \show\mymacro; there are

eight alphabetical characters, two space tokens, one

control sequence \TeX, and two brace characters.

But, we can also allocate a token list register

\mytoks by typing \newtoks\mytoks and give it
the same contents by typing

\mytoks=C(\TeX) is useful)

Here the equal sign is optional; we will often
omit it. One checks the contents by executing

\showthe\mytoks.

There are exactly 256 token list registers

\toksO, . . . ,\toks255 and \mytoks has been made
to stand for one of these by use of a primitive

\toksdef which is called by the macro \newtoks

above. This limited number of registers is fixed by

the structure and documentation of Q X , whereas

the number of control sequences (= hash size) is

either flexible or decided by the programmer who

compiled your I)@. O z m for example has a

configuration file letting you set hash size (up to

6500) along with many other parameters.
There is a clear distinction between a token list

register and the token list it contains-analogous

to the distinction between the wine bottle and the

wine. Thus it is an 'abuse' of language (in the
benign sense of N. Bourbaki) when one nevertheless

talks of 'a token list \mytoks'. The word 'toks'

will often be used in what follows as an informal

abbreviation for 'token list'.

The contents of \mymacro can be transferred

to \mytoks and the other way around as (1) and
(2) indicate.

\myt oks=\expandaf ter{\mymacro) (1)

\expandafter\def \expandafter\mymacro

\expandaf ter(\the\mytoks> (2)

To understand these formulas, recall that the prim-

itive \expandafter serves to modify w ' s rea-

sonably 'straight-ahead' expansion procedure by
expanding the token next-but-one to the right.

Thus, in (I) , it causes \mymacro to be replaced
by its expansion token list before the token list

register \mytoks has its value assigned. In (2), the
first \expandafter acts on the second which then

acts on the third which acts on \ the to replace

\the\mytoks by the token list in \mytoks to give

the intermediate result

\def \mymacroC(the toks in \mytoks))

64 TUGboat, Volume 13 (1992), No. 1

Further uses of \expandafter will occur below.

Try now the following less well known alterna-
tive to formula (2):

\edef \mymacro{\the\mytoks) (2*)

An alert reader may wish to protest at this point
that this formula will fail whenever the token lists

in \mytoks would itself admit expansion by \edef.
Wrongly! In fact, although \edef usually does a

maximum of the 'formal' expansions, it does just a

single expansion of anything of the form \the(token

register); see [p. 216 (top)]-a very convenient

exception.

Speed as well as elegance argues for using
formula (2*) rather than (2). I was surprised to

find that (2*) runs at over twice the speed of (2) or

of (1). (In principle, speed ratios could vary with
the implementation of m .)

It is probably because of this 'material equiva-

lence' of macros (simple ones without parameters)

and token list registers, that most TEX users and
programmers very much neglect token list registers.

Notwithstanding, I hope to gradually convince the

reader that token list registers are helpful, both

conceptually and practically, and deserve a place on
every W p e r t ' s workbench.

Some pitfalls involving token lists

Exposition in physics should be as simple

as possible. But not simpler.
A. Einstein

(1) Where token list registers are concerned, we
should always restrict ourselves to token lists that

are balanced in the usual sense that the grouping

symbols { and 1 balance. For example C) and

C O O) are balanced while 3) and){ are not.
Knuth assures us [p. 375 (bottom)] that it is

impossible t o put an unbalanced token list into a
token register.

Note that there is absolutely no requirement

that a token list in a toks register be balanced with

respect to other standard grouping pairs such as

\bgroup, \egroup and \begingroup, \endgroup.

(2) Be prepared for some mind-boggling distinc-
tions among the three grouping pairs just met. For

example, in the token assignment \mytoks{.. .),
the { can be replaced by \bgroup but not by

\begingroup. On the other hand 3 cannot be

replaced at all! This is carefully documented on

page 276 of The m b o o k .

(3) To put one sharp character #, with its usual
category (6=Parameter), into the token list that is
the expansion text of a macro \mymacro requires one

to input two sharps ##. Thus \def\mymacro{##3
makes the expansion a single sharp. The sin-

gle sharp in macro definition input is reserved for
macro parameters. In token list register input,

this complication does not exist: \mytoks={#)

puts one sharp into \mytoks. Many (all?) out-
put functions to screen or file double each (cat-

egory 6) sharp, notably \show and \showthe;

thus \mytoks={#)\showthe\mytoks yields ##. The

reader will have to be aware of doubling phenomena

for # to understand the formulas for parsing in the

sidebar of section 2. See [pages 203-204, 216, 2281.

(4) About \edef and its cohorts. Each macro
has an expansion to a token list. It is tempting

to believe that, analogously, (balanced) token lists
have an 'immediate expansion' provided by \edef.

To expand the token list in \mymacro execute

\edef\mymacro{\mymacro)

Use \show\mymacro before and after to see the

effect; the expansion is in some sense complete and
immediate.

Alas, this 'complete expansion' is not always

defined, and when defined may be utter nonsense;

for example, if the token expansion for \mymacro is

\def \aaa{AAA) where \aaa is not already defined
then will balk, while if \aaa is defined to be

aaa then one gets \def aaa{AAA)!

l$jX also has a surprise in store for you if
you believe that, when you change an occurrence

of \def to \edef, the (unexpanded) definition text

read in will necessarily be the same for each; see
[Exercise 20.171.

The rules for \edef are carefully laid out in

The m b o o k [p. 215 (bottom) and p. 216 (top)].
The double bends there are justified by the subtlety

of \edef, not by its rarity or lack of importance!

The rules are all the more worth learning be-

cause they apply with only minor modification to
\mark{. . .). \message{. . .), \errmessage{. . .),
\special{. . .), and \write{. . .); see [p. 216 be-

low 20.161. Roughly speaking, \edef and these

'cohorts' do all the formal expansion that is pos-

sible subject to an overriding condition that this

expansion process should change nothing in the m
environment other than the ultimate expansion to-

ken list for the macro being defined. It in fact does

slightly less than that because of the important

single expansion rule [p. 216 (top)] for \the(token

register) that we have already encountered.

Always keep in mind that \edef and its cohorts

can only be used when the programmer has such
intimate knowledge of the toks to be expanded that

he can guarantee the results are well-defined and

TUGboat, Volume 13 (1992), No. 1 65

suitable for his purposes. (In other cases, simpler

tools such as \expandafter and \noexpand may

prove useful.) Since the \edef primitive is powerful,

and can often do more for us in less time and with

less programming effort than competing tools, its
(prudent!) use is to be encouraged.

The single expansion rule above for \the(token

register) with respect to \edef and its cohorts

offers the only way I know to efficiently suppress

expansion of a long list of tokens; the primitive

\noexpand applies to only a single token.

Section 1.

Elementary 'text processing' with
Token Lists

It is well known that 7JjX can dabble in computer

graphics (LATEX does) and even in number theory

[p. 2181, so it should come as no surprise that it can

master the rudiments of classical text processing.
But although this ability is obviously relevant to

m ' s main purpose, typesetting, it seems little

attention has been paid to it.

The most basic operations of text processing

on a list of characters (or more generally of tokens)
are:

(a) copying.

(b) concatenating two lists x and y to form a
composed list xy.

(c) searching for one list x in another z (is x a
sublist of z?).

(d) splitting a token list z at a sublist x (known to
be present) into parts a, x, and b, so that z is the
concatenation axb.

The problems these token list processing oper-

ations pose for us are practical problems of coaxing

to perform these useful operations efficiently.

It turns out that most of them are a bit tricky to
define, but reasonably compact and efficient once

defined. To keep the formulas simple, I often do

not give the operations a catch-all syntax, as might

be desirable in a large macro package. That can be

left to the programmer.

One can at first imagine that the token lists

are segments of English prose, but in general there

are control sequence tokens as well as character

tokens. The situation is somewhat analogous in

computer printer scripts of the 1970's and in some

wordprocessor files that represent changes of font

style, etc., as tokens intermixed with the ordinary
characters.

TEX forces on us a very stringent notion of

equivalence for token lists, namely one-to-one order
preserving correspondence of the tokens in the lists

so that corresponding tokens are identical (not just
\let-equal or identical-after-expansion). Coarser

notions are probably best approached by doing

some preliminary macro expansion. Assuming two

toks are the expansions of \mymacro and \thymacro

respectively, the standard test for equivalence uses

\ i f x as in

\ifx\mymacro\thymacro\messageCEQUIVALENT~

\else\messageCINEQUIVALENT)\fi

We assume below that \xtoks, \ytoks, \ztoks,

\atoks, \btoks, are allocated token list registers,

cf. section 0.

Copying token lists

To copy the toks in register \atoks into the toks

register \btoks is a simple matter:

\btoks=\atoks

This is analogous to \ let \b=\a; speed is great and

independent of the contents of the register \atoks.
Quite the opposite can be said of the alternative

formula \btoks=\expandafterC\the\atoks).
There is another form of copying: macro

arguments, written #1, #2, etc., represent token

lists too and, in the definition of a macro with

arguments [Chap. 201, they can be stuffed directly

into a token list register or a macro expansion. See

the splitting macro \SPLITTQ below for a simple

example.
The \read primitive provides still another

form of copying: it reads in a line from an open file

\myf i l e thus:

\read\myfile\mymacro

converting it to the expansion toks of the macro

\mymacro. The inverse operation can be accom-

plished') by

\mytoks=\expandaf terC\mymacro)
\immediate\write\myfile~\the\mytoks)

Recall that \wri te is one of the cohorts of \edef;

this is another use of the 'single expansion' phe-

nomenon. Beware that because of category codes

1) Ron Whitney [Wh] has shown how to do this inverse
operation using \meaning in place of a toks register.
His approach is preferable for non-immediate writes
which are often used in index construction; the
difficulty with the toks register approach is revealed
by executing

Whitney's approach is much simpler and not less
effective than an earlier one of Todd Allen [p. 3771.

66 TUGboat, Volume 13 (1992), No. 1

and w ' s reading conventions these two operations
may not be strictly inverse one to the other.

Concatenating

We propose to concatenate \xtoks and \ytoks and

put the result in \ztoks.

The following simple formula gives the right
idea but fails dismally

\ztoks{\the\xtoks\the\ytoks) (1x1

because of the distinction between wine bottle

and wine. It is well known that cunning use of

the primitive \expandaf t er can correct this. W e

assume \let\e=\expandafter henceforth. The

most usual formula is impressive

\e\zt oks\e\e\e

C\e\the\e\xtoks\the\ytoks) (la)

and also fun to expand: to begin, the five odd-

numbered tokens from the left (all \expandafter1s)

go off in sequence like a long fuse and detonate the
last \the to produce an intermediate form:

\ztoks\e{\the\xtoks(the toks in \ytoks))

From this point, a short fuse consisting of just one
\e similarly detonates the first \the to produce a

second intermediate result

\ztoksI(the toks in \xtoks)%

(the toks in \ytoks))

which is then normally executed to give the desired

result.

Do not bother to memorize intimidating for-
mulas like (la)! You just have to remember the

intermediate stages and work backwards stringing

out your fuse lines of \e's.

And do not go out of y o u way to use them
in serious programming! They often execute more

slowly than than alternatives. In this case there is
an alternative that entirely avoids \expandafter,

exploiting \edef instead:

\edef\dummyI\ztoks=C%

\the\xtoks\the\ytoks))\dummy (lb)

It executes 15% faster than (la) . There are many

less elegant solutions that execute as quickly, e.g.

\edef\dummyC\the\xtoks\the\ytoks)

\ztoks=\e(\dummy)

Concatenation can also be done directly for the
toks of macro expansions; the trickery is much the

same. Indeed, given \x and \y, we can define \z as
follows

\e\e\e\def \e\e\e\z\e\e\ei\e\x\yl (2a)

\toksO=\e{\x) \toks2=\e{\y)

\edef\z(\the\toksO \the\toks2) (2b)

In (2b), we have used two of the five local 'scratch'

toks registers, numbers 0, 2, 4, 6, 8, that

reserves for temporary storage [p. 3461; this merely

avoids allocating special registers for the purpose,

using \newtoks. Caution: Many technicalities arise

in using explicit registers. For one, the odd registers

1, 3. 5, 7, 9 are reserved for global definitions; see

[p. 3461. For another, space after the second \toksO
above is obligatory. Indeed, without it (or some

alternative like \relax), T)$ expands \the\toks2

in the process of assimilating \the\toksO and then

a full expansion of \the\toks2 is attempted, which

is not what we want here.

Searching for one token list in another

Our goal is to decide whether a toks (toks sought)

is equivalent to a sublist of another toks (toks to be
searched).

The notion of a sublist of a (balanced!) token

list that we shall use is restricted to balanced sublists

occurring at nesting level zero for the T@ grouping
symbols { and 1. Such sublists of a balanced list

z are precisely those sublists x inducing a splitting

z = axb with all three of a, x, and b balanced. Call

such sublists admissible. For example, the sublist

st in the seven token list r{st)uv is a balanced

but inadmissible sublist, being at brace level 1. On

the other hand, {st)u is a balanced and admissible

sublist. (If this notion is not to your liking, see

[p. 376 (middle)].)

The tool we use for searching is the full

macro mechanism including parameters and
match text. As Knuth treats search macros in a

highly condensed fashion in the dirty tricks chapter

[Appendix Dl, a motivated discussion will be given
here.

To get the main idea, observe that a definition

\def \mymacro#i(toks sought){. . .) (*I
of a macro with match text [p. 2031 will make
\mymacro look for the first occurrence of the token

list (toks sought) in the input after \mymacro2) and

make #I be the token list (possibly empty) between

the two.

This approach imposes a significant restriction

on (toks sought) that is admittedly quite undesir-

able. Since it is a macro match text, (toks sought)
must contain no brace characters, for if it did T)$
would see a shorter macro definition in (*)!

2) If there is none before the next occurrence of \par
an error will result, unless \long\def replaces \def.

TUGboat, Volume 13 (1992), No. 1 6 7

Next observe that to prevent trouble in case

(t o k s sought) is absent, we can apply such a macro

to, for example:

(toks to be searched)\premarker(toks sought)%

\postmarker\endmarker (**I
Now, of course, the (toks sought) is always found

and the search problem is converted into a question
of where it is found: is it in the (toks to be searched)

or between markers? For this, one can apply to
(**) a macro with more complicated match text -

as follows:

\def \searchmacro#i(toks sought)%

#2#3\endmarker{ . . .)
(We have still to decide on the macro substitution

text C . . .)!) What happens when this is applied

to (**)? Because of \endmarker the macro uses

up the full text (**), which is all to the good- a

leftover could cause havoc. The argument #2 will be

the token immediately following the first occurrence
of (toks sought) in (**) and we conclude that #2

is \postmarker precisely if (toks sought) failed to

occur in (t o k s t o be searched). Thus after setting

out preliminary material

\newif \ i f found

\def \postmarkerI\uniquecs)

we specify the substitution text I . . .) to be:

(\def\this{#2)\ifx\this\postmarker

\foundtrue\else\foundfalse\fi)

Putting all this together we have a search

macro \searchmacro for a fixed toks (toks sought) .

Several improvements are given in the 'produc-

tion version' (3) below:

(a) allow (t o k s sought) to vary; this requires a

somewhat confusing layer of indirection.

(b) allow both (toks sought) and (t o k s t o be

searched) to be specified in terms of a token register

or macro as well as by direct typing; the solution is

to specify (t o k s t o be searched) by anything whose

first expansion is (toks to be searched), and similarly

for (toks sought) .

(c) make direct typing of (toks sought) and (toks
to be searched) convenient (our first attempt ignores

initial spaces); the strings 0 (zero. not Lob') and QO

in the production version permit this.

(d) keep the macro and related apparatus out of
the way of non-programmers by use of @ with

category 11 (letter).

The production version below was adapted

from one in AMS-W by Mike Spivak, which in

turn was adapted from [p. 3753. I had to generalize

somewhat to allow # I to be a token list rather

than a character and to assure features (a)-(d).

Also I spent a few extra control sequences on

readability.3)

Roughly speaking, the \INQO#lQ#2Q below sets

the condition \ i f INQ to true if the toks for #I is a

sublist of the toks for #2 and otherwise sets it to
false. More precisely # i and #2 should be things

whose first expansions are the toks in question-

so that arguments # i and #2 can be of the form

\mymacro or \the\mytoks.

\newif\ifINQ

\def \INQC\e\INNQ\e)
\def\INN@O#iQ#2@%

{\def\NIQ##l#l##2##3\ENDNIQ

C\ifx\mQrker##2\INQfalse

\ e l se \ INQtrue \ f i)%

\e\NIQ#2QQ#l\mOrker\ENDNIQ)

\def\mQrker{\mQQrker) (3)

There are some reasonable technical restrictions

on this macro. It is to be defined and used inside

macro packages where Q has been given catcode 11

(= letter). Neither token list produced by # I and

#2 should contain a \par4), nor a character token

Q with catcode 11 -something easily avoided as

they are either under the programmer's control or
come from the user's world where has catcode 12

(= other) or 13 (= active). Further, neither should
contain a token (like \mQrker), whose expansion

begins with \mQQrker.

There is also one annoying restriction explained

above. T h e toks for #I , z.e., (toks t o f ind) , mus t

contazn n o braces.5) However, braces (balanced of

course) are permitted in (toks t o be searched).

The above production version is admittedly

very technical; fortunately no understanding of how

all the the details work together is essential for what

follows. Incidentally, the splitting macro below is

more transparent and could serve as a stepping

stone.

3) For hints on recovering these examine [p. 3751.

4) To allow \par one uses \long\def in place of \def.

5) One way to work around this restriction without
resorting to the slow token-by-token approach of
[p. 376 (middle)] might be to use the \meaning

primitive to first convert braces to category 12
characters, cf. Ron Whitney's note [Wh]. This also
gets around the blanket restriction to 'balanced'
token list. However, it may require you to use \write

and \read to reconstitute control sequence tokens
from category 1 2 characters.

68 TUGboat, Volume 13 (1992), No. 1

Splitting at a sublist

Suppose we know (from the test above, for example)

that the toks (with no braces) in \xtoks is a sublist

of the toks in \ztoks. Then we typically want to

put into \atoks the segment of \ztoks up to the

f i s t occurrence of \xtoks and put into \btoks the
segment following that occurrence of \xtoks. This

is to be accomplished by the syntax

\SPLIT@O\xtoks @\ztoks @

\ a toks=\ In i t ia l toks@

\btoks=\Terminaltoks@

where \SPLIT@O#l@#2@ carries on the basic conven-

tions and design features for \IN@0#1@#2@ set out

above. The macro definitions required are

\newtoks\Initialtoks@

\newtoks\Terminaltoks@

\def\SPLIT@I\e\SPLITTQ\e3

\def\SPLITT@O#l@#2@%
{\def\TTILPS@##1#1##2@%

{\Ini t ial toks@<##l)%

\Terminaltoks@(##2))%

\e\TTILPS@#2@) (4)

We have now established basic processing func-
tions for W'S token lists that are generalizations

of well known text processing functions, and that

execute a t a useful speed. They can be used to
edit pieces of text before printing them, and more

importantly to build new macros that provide users

with syntax with flexible options. This second

'parsing' theme will be pursued in the next section.

I also recommend use of token list processing

deep within macro packages; for hints on this sort

of application I suggest reading about Knuth's list

macros [Appendix D, p. 378-3791 and Appelt's stack

macros [App, Chap. 51. Incidentally, W offers

some ready-made text processing control sequences

such as \uppercase and \lowercase.

Section 2.
From Text Processing to Keyword Parsing

One of the most powerful, convenient, and wide

spread syntaxes one encounters on classical com-

puters is the 'keyword option' system. W. Appelt

[App] has advertised this system in 'l$-X program-

ming, and provided a practical sort of recipe to
implement it, after a first simple example by Knuth

[p. 376 (top)]. Here we will provide recipes offering

improvements such as more general syntax, poten-

tially greater speed or capacity, or more compact

formulas. The most general recipe is the the second

below, called (A); it will be simple application of

our token list processing of section 1. But a more

subtle process (B) will often give better results in

case the keywords are macros.

An ad hoc parsing process

The keyword option system will be illustrated first

by a \ spec ia l command from Tom Rokicki's dvips

postscript printer driver for 'l$-X. His syntax

summary is:

\Special(psf i le="f ilename" [key=value] *) (1)

Here the possible keys are the words: hoffset ,

vof fse t , hsize, vsize, hscale, vscale, angle,

and each of these keys calls for a suitable quantity
in place of value. I have perversely written

\Special for \ spec ia l here so that (1) and (2) can

soon be assigned another meaning.

A specific example is

\Special(psfile=myfile

angle=90 hscale=50 vscale=50) (2)

which prints the Postscript graphics file myf i l e

rotated 90 degrees at scale 50 percent. The central
point to note is that the user can specify any number

(or zero) of keys in any order he pleases.
This command is interpreted by dvips (a printer

driver) after a preliminary expansion by ~ . l)

But let US imagine that we want to interpret
a control sequence with this sort of syntax. For

example, one might want a macro \Special

with identical syntax, that provides, in addition

to what Rokicki's \ spec ia l gives, a T)$ box
into which the printed graphics nicely fits. Of

course, such a \Special will normally also appeal

to \ spec ia l after composing a suitable box.
How can !&X understand or 'parse' (2)?

By making \Special a one-argument macro,

T)$ can efficiently isolate the guts of (2), namely

psf ile=myf i l e . . . vscale=50, and store it as a

token list T in a token list register, say \Ttoks.

This is the first (easy) step of parsing.
Now T is a concatenation (see section 1):

T = aa*bb*cc* ... zz* (3)

where a, b, . . . are 'keys' taken in any order from

a known family K and a*, b*, . . . are user supplied

token lists; we call a* the argument or field of the

key a, and b* the argument of b, etc.. .
The main step of parsing is to store a* , b*,

. . . in token list registers (or macros) associated

to the keys a , b, When this parsing of T
has been accomplished, T)$ has a firm grip on

1) Recall that \special is one of the cohorts of \edef
mentioned at the end of section 0.

TUGboat, Volume 13 (1992), No. 1 69

the information encoded in T and typesetting can or if we had wanted unexpanded arguments, the

proceed. following general method would have worked.
Our purpose in this section is to propose ways

to parse T in a few cases of practical importance. Parsing process (A)
First consider the specific example (I) . We are - Substitution and self-analysis

just as happy (or happier) with the full expansion

a** of a*, discussed at the end of section 0, since
one can readily believe that in the specific context

of (1) the expansion is unlikely to cause the sort of

trouble mentioned there.2)

The argument a* might well have rn condi-
tions and arithmetic (including =), while the full

expansion a** should be a dry number or dimension.

In particular, it will not contain =, which we can

then use as a tell-tale sign for a key.

We expand the whole of T (using \edef; see

section 0) and note that this gives aa**bb** . . . ,
i.e., the keys are intact. Since = is a tell-tale sign

for the next key b, we can readily determine b.
More precisely, in Rokicki's syntax, the keyword is

delimited on the left by a space and on the right by
=.3) We can thus split at b-or for greater speed

use just the idea of formula (*) in section 2 -to get

a** and bb**cc** We store away a** for key a,

then iterate the process to get a grip on b**, c**, . . .
similarly.

In summary, in case the next key is always
readily accessible, keyword parsing is a straightfor-

ward process. The time required seems then to be

the least time for all the processes we will consider.
Qualitatively speaking, the time per key is constant

and independent of the number of keys.

The syntax discussed by Appelt [App, Chap. 5

(end)] is of this simple sort; his next keyword lies

between the next semicolon and the next equal

sign. (Appelt formulas nevertheless run through

all keywords to find the next key, something to be
avoided if there are many keys.)

The accessibility of the next key in Rokicki's

case was probably a well-planned accident -related

to Rokicki's driver wanting to parse this syntax in

a hurry. In the absence of the tell-tale = above,

2) The reason is that TJjX always does this sort of ex-
pansion on the argument of \special before stuffing
the result into the .dvi file for further processing by
the printer driver. Clearly, the user will have himself
to blame if he attempts for \Special what fails for
\special!

3) To be more user-friendly, it would be advisable to
allow space between (for example) hsize and =.

Although this may double the time to locate the next
keyword, one still does not have to run through all
the keywords.

This is a simple and general process that depends
heavily on our token list processing in section 1. It

is practical if there are just a few keys.

For each key k in K, search4) for k in the toks

T of form (3) and, if k is present, replace it (using

splitting and concatenation of section 1) by the two
tokens \zzz\macrok. Thus (after doctoring the

extremities), we readily give altered T (in \Ttoks)

the form:

\macroa a*\zzz\macrob b*\zzz . . .
\macroz zS\zzz (4)

This completes the substitution step.

Now for each k in K, we are at liberty to

define \macrok#1\zzz as a one-argument macro
which places token list #1 in a token list register (or

macro) associated to k. Then writing \the\Ttoks

as a command, we execute (4), and the result is to

complete the parsing. The idea of this second step

that we have subtitled 'self-analysis' has been used

by Knuth in dealing with the TJ$ data structure
called 'list' [Appendix D, p. 378-3791.

Note that if there are N keys in K, the parsing

process always has N nontrivial steps and each

applies to the whole token list. Thus the time of

execution can be estimated as roughly proportional

to nN where n is the number of keys actually

present in the token list T. Consequently for N

sufficiently large the process will be intolerably slow.

How large? My tests suggest you should be worried

for N > 5 .

The AMS-W bibliography reference macro
\ ref . . . \endref is one that has well over a dozen

keys; for it, one needs a better parsing technique.

It has the peculiarity that the keys are all macros.

Consider the example

\ ref
\key W \by A . Weil

\paper Sur quelques

r \ ' e s u l t a t s de Siege1

\ journa l Summa B r a s i l Math.

\vol 1 \yr 1946 \pages 21--39

\endref

Note that only \ ref has a balancing terminator

\endref; it lets us scoop up the whole token list

4) If one key is a subset of another, e.g., "SCALE" and
"VSCALE", deal with the larger one first.

70 TUGboat, Volume 13 (1992), No. 1

from \key to 21--39 as a macro argument. Once
again, we have a parsing problem as described

for (3).
There are six keys here: \key, \by, \journal,

\vol, \yr , \pages. But parsing process (A) above
would require searching with well over twice as

many keys. The feature that each key is a control

sequence lets us use a new process (B) which will

be given in full detail.

Parsing process (B)
- Sequestered self-analysis

This process usually applies when each key is a

control sequence; it requires a few extra conditions

which will become clear when the process has been

described.
Since process (A) does indeed apply here, and

what follows is comparatively difficult, I had better

explain very clearly what (B) attempts to gain!

Suppose that the set K of keys is big, say N of

them (perhaps 25), and getting bigger year by year.

We ask for a process that on a given example using

n keys (perhaps n = 5) does not run substantially
slower each year as N increases. We would like

to get by with a few times n steps- to be more
precise, not more than a + bn, where a and b are

constants independent of N. In contrast, the similar

estimate for (A) would be a' + b'nN. Thus in the
usual succinct mathematical terminology, process

(A) requires O(nN) steps while (B) requires O(n).

The latter seems, qualitatively speaking, a 'nec

plus ultra' of good behavior, because it means that
the cost of parsing per field actually present is
constant. 5 ,

The 'box register' alternative to token list

parsing that is actually used by A M S ~ for the

\ r e f . . .\endref macro system enjoys the sort of

linearity that we are promising for (B). On the other

hand, the keyword parsing provided by W. Appelt

[App, Chapter 5 (end)] simply does not apply.

The idea for (B) is to make a preliminary

pass over the material between \ref and \endref

to determine, for each key \kt that is present,

the key \k that follows, and then define a macro

\kt#1\k (with argument # I and delimiter \k),
which will, on a second pass, serve, much as in

(A), to sweep up the field of \k' and store this

toks in a corresponding macro expansion. For this

first pass, subtitled 'sequestered self-analysis', one

assigns special temporary definitions to each key

to carry out this plan. A major difficulty is that

I cannot prevent extraneous typesetting activity

during the first pass; the best remedy known is to

'sequester' this extraneous material in an \hbox and
annihilate it. Unfortunately, this \hbox involves

a grouping that entraps definitions-unless one
uses some global definitions. Perhaps surprisingly,
this secondary difficulty is overcome without losing

the expected behavior of the parsing process with
respect to grouping, namely that it change

nothing outside braces enclosing the whole process.
Now we get down to programming process (B).

The functioning prototype is given in a sidebar,

but will probably have to be understood as it was

built -by stages. The programmer has to define

for each key \k in K (say \paper, to be specific) an
artificial expansion that combines \k (say \paper)

with key \kt (say \author) stored as author in a

register called (for good reason!) \LastKeytoksQ.

The definition of \paper goes roughly as follows.

\def\paper
{\global\def\authorAgentQ

C\def\author####l\paper

C\def\authorBagQC####l)\paper)%

\global\let\authorAgentQ=\relax)%

\LastKeytoksQ=Cpaper)%

\aftergroup\authorAgentQ

\def\paperC\errmessage

(*** A key has been used

twice. Once i s max. ***I)%

3 (5)

The programmer unfortunately is not in a position

to write something so explicit - for example he does

not know the actual name of the key that will pre-

cede \paper. Standard indirect methods involving
\csname . . . \endcsname apply nevertheless. This

macro depends on \k in a very simple way; so the

m p e r t can get away with writing just one (nasty)
macro \SetKeyDefQ (see sidebar) so designed that

executing \SetKeyDefQ(k) for \k in K sets things

up once and for all.

To facilitate the parsing we use an extra termi-

nal key \ t Q i l . as well as an initial key \ h e ~ d . ~)

One then executes:

\LastKeytoksQ={heQd)

\setboxO=\hbox{\the\Ttoks\t@il)

\setboxO=\hboxC3

\ l e t \ t Q i l = \ r e l a x

\heQd\the\Ttoks\tQil (6)

5) In contrast, I do not know how to use TEX to reverse
the order of a list of n tokens in O (n) steps!

6) The (category 11) Q in head and tQil keep these out
of the user's way. Likewise, \Ttoks, \e, \n, \cs, \ecs
should be protected elsewhere.

TUGboat, Volume 13 (1992), No. 1 7 1

The first appearance of \the\Ttoks is a dirty

trick! What we really wanted to do is execute in

order just the keys abc.. . found in T. But, as

these are buried in T and not directly accessible,

we execute all of T instead. This (unfortunately)

causes spurious typesetting activity, but we catch

the detritus in \box0 and annihilate it! 7,

The global definitions are essential to pass

information out of the first \hboxC . . . I group in

(6), using \af tergroup. This is accomplished as

follows. The tokens \aftergroup\authorAgentQ
occur inside the grouping of \hboxC. . .) and cause

the globally defined macro \authorAgentQ to be
executed after the closing brace. This in turn

prepares a second definition of \author for a second
execution of \ the\Ttoks in the last line.

This second execution will be similar to the

last step in (A): the macro \author (new def-

inition) will cause the field of the key \author

to become the expansion toks of \authorBagQ-

outside the \hbox{. . .) group. This process is

carefully designed to cause no net global changes in

case it occurs within a larger group; in particular

\authorAgentQ is globally \ r e l ax before and af-

ter. The resulting 'escape from braces' without net

global change seems in itself a worthwhile trick.

Both executions of \ the\Tt oks cost O (n) steps.

While the first involves futile typesetting, the second

is fast and purely syntactical. Let us have a closer

look at the second: after a couple of expansion
steps, what TEX sees is aa*bb*cc* . . . ; then the first

three tokens a a*b act together to put the field a* in

the expansion of the macro8) aBagQ leaving behind

bb*cc* Then bb*c act together, and so on until
all fields have been 'bagged' and only \tQil is left,

which evaporates as we have set it equal to \ re lax.

The use of \af tergroup restricts the number

n of keys used in any one parsing example to be less

than the size of m ' s save stack space. This may

mean n < 100 in current implementations of T$$;
but soon your limitations should be much more

liberal; already, O z r n ' s configuration file of 1990

lets one push n up to 2000, and the total number

N of keys to about 5000. Perhaps squeamishness

about the use of \af tergroup [p. 3741 can be

relegated to the past. In any case, \af tergroup

could be replaced by some global definitions with-

out prejudicing the linear performance we have

achieved.

This process (B) does have some drawbacks
beyond the fake typesetting. (You expect a dirty

trick to have some!)

(i) It assumes that T is fit to be put in an \hbox,
and that, on execution of T, the key macros a , b,

. . . will be executed in that order.
This is a very mild restriction that refers to

the first pass; it should in practice hold if each key

field is fit to be composed on its own. If (i) is not
satisfied, one can hope it will be if one suitably

alters the TEX environment for the first pass.

(ii) The speed of parsing is a bit disappointing
to me; I get about 50-100 key fields parsed per

second with a 1987 microcomputer (16 mhz and 32
bit bus). In implementing (B), one has a great deal

of latitude in programming style; perhaps I have

made some bad choices; if so I hope some reader

will offer better coding. This slowness may not

be a serious fault if you have a sufficiently fast

computer, or if this parsing is not going to be

proportionally a major activity of rn, or if the

other T$$ material is already slow to process-for

example commutative diagrams, tables, or verbatim

material.

A good feature of (B) that I did not expect is

the brevity of the coding.

In summary, the one rather general parsing

process (A) is firmly based on our token list pro-

cessing, and is delightfully simple and safe, but,

used with a large number of possible key options, it
becomes slow. That has led us to consider process

(B), whose time cost per key field actually parsed is

essentially constantg) and independent of the total

number of possible keys. In practice it seems that
(B) is faster than (A) for N > 5.

%% Sidebar: Testbed f o r parsing method (B)

%% L. Siebenrnann 1991

7) One naturally wonders whether there is a much
neater trick. One can marginally speed up this trick
using the 'dummy' font device of the last dirty trick
9 in [Appendix D, p. 4011, but if you are not careful
you will instead lose time through overhead.

8) I have not used a token list register here to store the
key field; this permits the number of keys to exceed
the total number (256) of token list registers!

\chardef\CatAt\the\catcode'\Q\catcode'\Q=ll

\newtoks\TtoksQ \newtoks\LastKeytoksQ
\ le t \e=\expandafter \let\n=\noexpand

9) This assumes fields of constant size; if not, the
dependence of time cost per field on the size of the
field is more or less linear, with a substantial positive
constant term.

TUGboat, Volume 13 (1992), No. 1

\let\cs=\csname \let\ecs\endcsname
0 0

Texpert protect \e, \n, \cs, \ecs with Q

\QK.by.\QK.key.\QK.paper.\QK.jour.\QK.yr.

\QK.pages.\QK.issue.\QK,no.\QK.vol.

\QK.publ.\QK.eds.\@K.bysame.\QK.paperinfo

\QK .book. \QK . publaddr . \QK . lang .
\@K.bookinfo.\QK.finalinfo.\QK.t@il.

\let\Typeset@\relax % stop after parsing

%% begin test
\def\Ri% for time test

\ref

\key W \by A. Weil\paper Sur quelques
r\'esultats de Siege1

\ jour Summa Brasiliensis Math.
\yr 1946 \pages 21-39

\endref 3

\show\key % all set?
\RRR % do 100 iterations

Should token list parsing have fixed the bug
in the A M - w reference macros?

As we will see presently, the answer is no, but

it seems worth examining the pros and cons since

many of them would have to be examined in any

large scale application of parsing based on token

lists.
The bug, located in amsppt . sty (versions <

2.0), prevented hyphenation after explicit hyphens,
or after mathbins and mathrels, for line-breaking in

references. As Michael Downes so nicely explained

[Do], this bug (and also the residual problems with

Knuth's fix) have occurred because, if a fragment
of a reference is put into an hbox or even a

vbox, certain stages of line-breaking may be done

prematurely and hence inappropriately in that box.

The plan for using token registers is very simple.

Place the various parts of a single bibliography

reference into as many token lists using parsing

method (B), edit these token lists as necessary
using the text processing of section 1, concatenate

them in the desired order1) to make a single token

list for the reference in question, ultimately releasing

the whole reference 'en block' into w ' s intestines

for typesetting.
The bug will not occur since one replaces

the troublesome boxes by token registers. Indeed

those aspects of typesetting related to line breaking

simply do not take place in token registers; they
are delayed until the full reference is ready for

typesetting.

Ron Whitney and Mike Downes tell me that

the idea of using token lists in place of boxes was

well known but considered to be an impasse (no

way!).
The token list approach has some intrinsic ad-

vantages over the box-oriented approach. We have

already mentioned the possibility of doing some

text editing before printing (say to replace AMS

by Amer. Math. Soc.). In this vein, there is the

possibility, not well afforded by the box approach,

of having any key's data influence the action taken

for any other, for example, when the reference is

%\show\key~a~Q \show\byBag@ % checks?
%\show\paperBagQ \show\ jourBagQ

%\show\yrBagQ \show\pagesBagQ

1) Such ordering should have a cost proportional to

n logn when n out of N keys are present. But in

d~s-l$X a cost aN with a very small is tolerated
instead for simplicity.

TUGboat, Volume 13 (1992), No. 1 73

a book the style of several entries could reason-

ably change. One can also output the references

to a file in a convenient 'data structure' format,

to facilitate further processing. This might, for

example, facilitate preparation of a citation index

(or other bibliographic data base) for journals using

A M S - W . As this idea applies to reprocessing

archived articles, the toks parsing approach may

ultimately be complementary to the box-oriented

approach even in the specific context we are consid-

ering. Another advantage already mentioned is the

virtual inexhaustability of token registers: although

there exactly 250 token registers or box registers in

the strict sense, macros, of which there are thou-
sands available, can be employed as auxiliary token

registers; they indeed were in the testbed for (B).

Nevertheless, we will have to wait for some

future occasion to see a large-scale test of the above
token-parsing ideas. There are a host of reasons

that, taken together, are quite cogent. Repair of

amsppt . s t y (where the faulty macros reside) has

already been successfully made by Mike Downes (for

amsppt . s t y version 2.1 of July 1991) using Knuth's

\vbox approach plus extra work to suppress unde-

sirable side-effects. A very practical consideration

is that Knuth's approach is comparatively close to

Spivak's, so that much less rewriting of this hefty

complex of macros was required.

Furthermore, the box approach is exceedingly

fast - to the point that bibliographies are composed

faster than most mathematics. This turns out to

be more than twice as fast as the next fastest
contender, the parsing approach (B), which is in

turn more than twice as fast as (A). See [p. 3851.

Finally, there is a general weakness (mentioned

on [p. 381-382, p. 3851) afflicting all macros having

arguments which are blindly scooped up as chunks

of input, namely: category changes wi thin the

arguments will be ignored because category i s fixed

at input . We did propose to scoop up T above

using \ re f# l \endref ! One impact is that, with

our present approach, \verb (of I 4 W) and \lit

(of UMS-m) would become inoperative within a

referen~e.~) This may prove annoying, but one can

live with it by 'hand setting' or by importing literal

material in a box register. Another impact is that

language changes would have to be made so as not

to involve category changes, which fortunately is

possible. It might be be desirable to set up some

warning using \message{. . . I to be triggered by

uses of \catcode within \ r e f . . .\endref and give
indication of alternatives. These category problems

are annoying but they are not debilitating.
In summary, token list parsing in version (B)

compared to the box register alternative seems a
promising alternative because of multiple hitherto

unused possibilities we have mentioned; it equals

box registers in dealing 'linearly' with increasing

loads, but is always slower by a small integer factor;

and finally it may, alas, be penalized for blocking

category change. I rate that an honorable second

place on a tough course.
The role of token registers in Plain W,

I P W , or A M S - r n was quite marginal. But

recently, their role has become quite significant,
for example in M. Spivak's UMS-W (released

recently into the public domain). Now that rn
is no longer evolving, I expect rn programming

will still advance a long way by increasingly calling

upon currently underused resources.

Bibliography

[App] W. Appelt, w fiir Fortgeschrittene, Program-
miertechniken und Makropakete, Addison-Wesley, Bonn,
1988.

[Do] M. Downes, Linebreaking in \unhboxed text,
TUGboat 11, no. 4 (Nov. 1990) 605-612.

[Kn] D. Knuth, The w b o o k , copyright 1984, Amer.
Math. Soc., Volume 1 of Computers and Typesetting,
Addison-Wesley.

[Wh] R. Whitney, Sanitizing control sequences under
\wr i t e , TUGboat 11, no. 4 (Nov. 1990) 620-622.

o L. Siebenmann
Matbmatique, BBt 425
Univ. de Paris-Sud
91405 Orsay, France
1csQmatups.matups.fr

-

2) One can in principle pick up the token list T
one token at a time watching for \verb and \lit,
in order to avoid this weakness, but that sort of
procedure is much too slow. For just this reason we

have ignored parsing procedures based on sequential
token-by-token examination, using \futurelet.

