
TUGboat. Volume 13 (1992); No. 1

Investigate possibly sign~ficant relationships, such as:

Investigate possibly slgnlficant relationsh~ps,

such as:

. Fabric vs. type

. Fabric or type vs. phase

Thespatial distribution of typesorfabrlcs or phases;

the co-ordinates identify the location to a 112 me-

tre grid square - cons~der how to look at the

distribution by 50 metre square.

You will probably want to concentrate on one fabric

or type at a time - it would be nice to automate the

process of select~ng the appropriate data from the

database.

Fabric vs. type

. Fabrlc or t ype vs phase

T h e spatial distribution of types or fabrics

or phases: the co-ordinates identlfy the io-

cation t o a 1/2 metre grid square - con-

sider how t o look a t the distribution by 50

metre sauare.

YOU WIII probably want t o concentrate on one

fabrlc or type a t a t ime - i t would be nice t o

automate the process o f selecting the appro-

priate data f rom the database.

Helvetica Computer Modern

Figure 1: The effect of various fonts in slides

original S L ~ . Future releases of the font selection

macros are likely to feature this system; combined

with the virtual font suggestions outlined above, one

can envisage a long-overdue renaissance for SLITEX.

To demonstrate the effect of the virtual font ap-

proach in these pages would be difficult, but it may

be of interest to readers to see the visual effect (al-

beit reduced) of S L W slides set in Helvetica rather

than the familiar hugely expanded Computer Mod-

ern (Fig. 1).

This article has benefited considerably from

comments by the TUGboat reviewer.

References

[Knuth 19901 KNUTH, D. 1990. 'Virtual fonts:

more fun for grand wizards', TUGboat 11, no. 1,

pp. 13-23.

[Lamport 19861 LAMPORT, L. 1986. U T E ! User's

Guide & Reference Manual, Addison-Wesley

Publishing Inc., Reading, Massachusetts.

[Mittelbach & Schopf 19901 MITTELBACH, F. AND

R. SCHOPF 1990. 'The new font family

selection-User interface to standard LATEX',

TUGboat 11, no. 1, pp. 91-97.

o Sebastian Rahtz
ArchaeoInformatica
5 Granary Court
St Andrewgate
York YO1 2JR

U.K.

Packing METRFONTs into POSTSCRIPT

Toby Thain

Aimed at implementors of DVI-to-POSTSCRIPT

translators, this article suggests adapting Rokicki's

packed font format [I] to compactly define bitmap

fonts in POSTSCRIPT, an approach which has been

successfully implemented and tested by the author.

The problem of integrating METAFONT and

POSTSCRIPT has been tackled in two completely

different ways: by modifying METAFONT to out-

put curvilinear paths and outlines [4, 51, and by

using METAFONT's standard bitmap output di-

rectly. Since POSTSCRIPT allows flexibility in

representation, the choice is largely philosophical.

While outlines are less device-dependent and more

amenable to linear transformations, this author feels

that users need an effective means of using

METAFONT-generated bitmaps with the gamut of

POSTSCRIPT devices.

Another consideration is that METAFONT's

digitisation is likely to be better than that pro-

duced from a machine-translated outline font; cur-

rent POSTSCRIPT printers are notably lax in this

regard. (Adobe Type Manager is a significant

improvement, but printers do not yet incorporate

this renderer, resulting in the irony that some non-

POSTSCRIPT printers using ATM render text better

than many POSTSCRIPT printers.) In short, where

low-resolution devices are concerned, the author be-

lieves that METAFONTs such as Computer Modern

TUGboat, Volume 13 (1992), No. 1

I Name dpi GF PK PS VM I

Roman are better digitised by METAFONT than

by POSTSCRIPT from an outline. (This is also

apparent from examples presented in [5].)

It is clear from the table that GF-format glyphs

are excessively large at high resolutions, and even

low-resolution fonts are cumbersome if no compres-

sion is used. Another constraint is the limited

'virtual memory' available to POSTSCRIPT devices;

all fonts in a document typically coexist in this

space, and therefore it is important to manage it

efficiently (the column headed 'VM' indicates how

much of this memory is used by each packed font.)

A compressed representation is also desirable where

fonts are stored in a POSTSCRIPT device's local file

system.

This wastefulness suggests using a compressed

description which could be interpreted by the printer

itself. Having the advantages of high compression

ratios and well-documented algorithms, PK format

seemed a natural choice. Furthermore, existing 7l&X

fonts are largely in PK format.

An implementation of this idea is shown in Fig-

ure 1, encapsulated in a dictionary named pkdict.

Most of the work is done by the bc procedure; what

remains is to show how specific fonts are arranged

to make use of that code. (These examples, compro-

mises between clarity and brevity, can be improved

in either direction.)

An example

A bitmap font dictionary might be defined as follows

(automatically generated from logo10.300pk):

/logo10 pkdict begin 10 d i c t dup begin

/FontType 3 def

/FontMatrix [26214400 109226469 div

0 0 2 index 0 01 def

/Encoding ev def

/Buildchar /bc load def

/glyphs 128 a r r ay

def

/FontBBox [O 0 30 251 def

end end def inefont

/pkdict 11 d i c t dup begin / a [O 128 192 224 240 248 252 2541 def

/p 1 2 index 3 1 r o l l put) bind def /f / f a l s e load def /t / t r ue load def

/r {s t r ing c u r r e n t f i l e exch r eads t r ing pop) bind def /ev [O 1 255 { () dup 0 4 -1 r o l l put cvn) for] def

/gn {d p get h i {-4 b i t s h i f t / h i f a l s e def) C15 and /p p 1 add def / h i t r u e def) i f e l s e) bind def

/gb {d p get i and 0 eq /i i dup 1 eq {/p p 1 add def pop 128) {-I b i t s h i f t) i f e l s e def) bind def

/pb {{j or) i f j 1 eq (1 q 3 -1 r o l l put /q q 1 add def 0 128) {j -1 b i t s h i f t) i f e l s e / j exch def) bind def

/pn { gn dup 0 eq I 11 add gn dup 0 ne {exit) {pop) i f e l s e) loop

exch €4 b i t s h i f t gn or) repeat 15 sub 13 df sub 4 b i t s h i f t df add add

3 { dup df g t { dup 14 It {df sub 1 sub 4 b i t s h i f t gn add df add 1 add)

(14 eq {pn) C1) i f e l s e /r exch def pn) i f e l s e) i f) i f e l s e) bind def

/bc C save 3 1 r o l l exch /glyphs get exch get pkdict begin 16 d i c t begin aload pop

/d exch def /df exch def /c exch def /w 6 index def

3 index neg 3 index 6 index sub 1 add w 6 index sub 5 index 1 add setcachedevice

f a l s e [l 0 0 -1 8 -2 r o l l 1 add] /p 0 def

w 7 add -3 b i t s h i f t dup s t r i n g /1 exch def dup s t r i n g /br exch def

dup s t r i n g exch 1 sub 0 1 3 -1 r o l l (1 index exch 255 put) f o r / w r exch def

df 14 eq {/i 128 def {/j 128 def /q 0 def 0 w {gb ~ b) repeat j 128 ne (1 q 3 -1 r o l l put) {pop) i f e l s e 1))

{ / r -1 def / h i t r u e def /n 0 def

{ r 0 It { /r 0 def /k 0 def /v 0 def / q 0 def /b w def /n n { dup 0 eq {pop pn / c c not def) i f

dup b It dup {I index) {b) i f e l s e dup

k 0 ne dup 8 k sub 2 copy g t {exch) i f pop c {dup a exch get k neg b i t s h i f t v or /V exch def) i f

dup k add dup 8 eq €1 q v put /q q 1 add def pop 0) i f /k exch def sub) i f

dup 0 ne { dup -3 b i t s h i f t dup 0 ne { 1 q c {wr) {br) i f e l s e 0 4 index ge t in t e rva l pu t in t e rva l

q add /q exch def 7 and) {pop) i f e l s e c {dup a exch ge t) {O) i f e l s e /v exch def k add /k exch def

) {pop) i f e l s e exch {dup b exch sub /b exch def sub) {k 0 ne (1 q v put) i f sub e x i t) i f e l s e

) loop def) i f /r r 1 sub def 1)) i f e l s e imagemask end end r e s t o r e 1 bind def

end def

Figure 1. It looks complicated, but it works!

38 TUGboat, Volume 13 (1992), No. 1

Such Type 3 fonts require a BuildChar proce-

dure to draw glyphs. The Encoding array trivially

maps the 256 possible character codes to 256 dif-

ferent names (required by the font cache). The

FontMatrix defines the resolution; the font's pix-

els and measurements such as bounding boxes and

widths are transformed by this matrix to 'user

space'. glyphs is an array mapping character codes

to Lpackets' describing the character:

[w h h - o f u-off dx dy f dyn-f da ta] .

f is t r u e if the first run of pixels is black, f a l s e

otherwise, and data consists of the nybble-packed

glyph description. The other entries correspond to

PK character packet fields.

After the character descriptions comes the

font's bounding box, which is computed by the

PK-to-POSTSCRIPT translator.

Finally, the BuildChar procedure (which takes

its definition from bc in pkdict above) is executed

by the interpreter when a character from this font

is needed. In short, bc looks up the character's

description given the font dictionary and a char-

acter code, passes the width and bounding box to

set\-cache\-device (thereby requesting that the

character be cached), and draws the glyph one row

at a time using imagemask. For further information

on the structure of user-defined POSTSCRIPT fonts,

see [2].

POSTSCRIPT'S font cache ensures that each

different glyph drawn is only decompressed once;

subsequent requests for the same glyph bypass

BuildChar and are satisfied by the cache. Only

glyphs which are drawn are decompressed.

It is worth noting that some device-indepen-

dence comes 'for free' with POSTSCRIPT; for ex-

ample, bitmap fonts defined in this manner can

be rendered at any resolution, under any linear

transformation; hence, if bitmaps are not available

for a specific resolution or magnification, those at

another resolution can be substituted (albeit with

less pleasing results).

Character positioning is an issue which can be

dealt with on two levels. METAFONT records two

different dimensions for each character: a rounded

'displacement' in pixels, and a 'TFM width' for type-

setting purposes. Two considerations conflict when

positioning characters: it is desirable that charac-

ters are spaced according to their TFM width, so that

margins line up; and yet integral displacements will

yield more even spacing (an issue addressed in more

detail by [6]). The approach taken by this POST-

SCRIPT representation is that characters are spaced

by displacement, therefore the DVI-to-POSTSCRIPT

translator will occasionally need to compensate for

accumulated rounding errors according to [6].

If fonts are to be stored on a printer's local

disk (freeing the host of the responsibility of man-

aging them), a file usr/pkdict should be created

containing the definition of pkdict above. Each

font file should begin with

/pkdict where {pop) {(usr/pkdict) run) ifelse

which executes this file if necessary, rather than

defining the dictionary in each font file. Font

file names are conventionally prefaced by 'f onts/ '

(e.g., f onts/logolO). Local font files are executed

by f indfont to define the font dictionary, and

therefore consist of the same text that would be

downloaded 'on the fly' (see [3]).

Finally, the author would welcome discussion of

the techniques and issues presented in this article,

and any aspects of the integration of and

POSTSCRIPT. The author has also ported 3.0,

METAFONT 2.0 and associated tools to the Inmos

T800 Transputer.

References

1. T. Rokicki, "Packed (PK) font file format,"

TUGboat 6(3), pp. 115-120 (1985).

2. POSTSCRIPT Language Reference Manual,

Adobe Systems Inc., Addison-Wesley (1985).

3. POSTSCRIPT Language Program Design,

Adobe Systems Inc., Addison-Wesley (1988).

4. J.D. Hobby, "A METAFONT-like System with

POSTSCRIPT Output," TUGboat lO(4),

pp. 505-512 (1989).

5. S. Yanai & D.M. Berry, "Environment for

Translating METAFONT to POSTSCRIPT,"

TUGboat 11(4), pp. 525-541 (1990).

6. D.E. Knuth, DVItype .web (1982-90).

o Toby Thain
RMB 712

Beaufort
Victoria 3373

Australia
Ph. +6153 497296

Fax +6153 497339

