
TUGboat, Volume 13 (1992)) No. 2

I Graphics I
A Solution to the Color Separation Problem

Daniel Levin

Color is one of the hallmarks of modern publishing,

yet makes no provisions for it. This is

unfortunate, although understandable. Until the

age of desktop publishing, colors were not part of

the domain of typesetters. If a print job involved

colors, the help of others was required: graphic
artists to do the paste-up, photographers to do the

separations, press operators to mix and apply the
ink.

While is an exceptional computerized
typesetter, it has definitely not kept up with other

programs in terms of color capabilities. In the 7&X
community, there is much concern that the program
is losing its position as the premier typesetter for

books and journals. I believe this process will not
only continue, but accelerate, unless adapts
to the changes that have taken place on desktops

and in printshops around the world. The changes
are centered around new technology, such as color
scanners and printers. But that is not all: the

greatest change may be in people's expectations of

what a typeset document should look like.

Perhaps some will argue that color is not
an important issue, since the needs are different
between academic presses, where m has the upper
hand, and commercial operations, where desktop

publishing is taking over. The differences are not
so great, however. The argument may be based on
the view that color is just an embellishment and is

best left to graphic artists and photographers. In
my opinion, such a view patronizes the arts and

constrains the written word.

Color is helpful, if not essential, in many
publications. It can highlight parts of a text,
clarify certain points, and distinguish phrases and

examples. Who has not seen a bible annotated

or a textbook printed with answers in red? Who
has not written a paper and wished that tables

and graphs could have multiple colors? Who has
not read a book or magazine and been drawn in

by colorful headlines and diagrams, not to mention

advertisements? Color printing has arrived and
its role is widening, to bulletins, newspapers, even
scholarly journals.

This article does not deal with all of the issues

surrounding color. Instead, it focuses on just one:
how to separate colors-or more specifically, how

to apply different colors to characters and rules.
Also. while the title reads "A Solution.. .", the

article is more of a proposed solution. It mentions

a superset of m called Vector m (or V w) ,

which uses scalable font technology.' So as to avoid

the debate about names, we should think of V w ' s
newer capabilities as proposed extensions to m . 2

Another focal-point of this article is on a certain

type of publication: mathematics textbooks. The

discussion is limited not only because of space but

because of the author's experience in that field.

Obviously there are other important uses of color,
and those deserve careful attention before one can

really claim to have solved the color separation

problem. In particular, there needs to be an agreed-

upon model of color that is convenient for both
authors and publishers. The model must work

with different tints or saturation levels; it should

accept both process and spot colors; and it should
allow colors to be layered (printed on top of one

another) or "cancel out" those underneath. These

are interesting topics, but they will have to be dealt
with at another time.3

1. The traditional approach

As mentioned at the outset, does not make
any special provisions for color. You can say that it
is a beautiful and flexible system, but when you get

right down to it, everything is done in black and

white. Nevertheless, there are two possibilities open

to someone who wants to create a document with

more than one color. They are not very satisfactory

methods, but they do work in certain situations.
The first method involves 'hboxes' and 'vboxes' and

makes use of m ' s \phantom command; the second

relies on the METAFONT program to create invisible
fonts.

a. Boxes. This method involves putting small

amounts of text in boxes, and then keeping or
discarding the boxes, depending on whether they

match a given color. For instance, suppose you

wanted to print a headline in blue and a short
paragraph in black. That would require putting the

headline in an 'hbox' and the paragraph in a 'vbox'.

Then, to separate colors, you process the document

twice, each time hiding one of the objects.

Let's say you wanted to print the headline and
hide the paragraph. That is accomplished by typing

\phantom{\vbox{paragraph material)). To do

the reverse, you remove the \phantom command

hom the paragraph (but keep the paragraph in

its 'vbox') and type \phantom{\hbox{headline)).
In both cases, the \phantom command measures

the enclosed box, discards it, and puts an empty,

TUGboat, Volume 13 (1992), No. 2 151

similarly-sized box in its place. All of the boxes are

necessary. They assure that the document will be

laid out the same way each time it is processed.

The box method works reasonably well if it

is done in vertical mode and with short amounts

of text (or in horizontal mode with single words
or characters). It does, however, have serious

limitations. First, since all text is boxed. there is

no way for page breaks to occur in the middle of

a paragraph. Second, any phrase inside an 'hbox'

is typeset at its natural width; no glue is allowed

to stretch or shrink. Third, rn spends extra time
building and sizing boxes. Fourth, the method gets

increasingly complicated with each additional color.

A fifth problem relates to the design and

proofreading stages: there is no way to approximate

how colors look next to each other. Your choices

are to print colors one at a time or altogether

(presumably in black). Referring to the previous

example, it would be nice if you could print the

paragraph normally and the headline at, say, 50%
gray - in other words, give the headline a rough

approximation to blue. (It would be even nicer,
if one has a specially-equipped printer, to see a

document's true colors.) Not being able to see

colors, or at least approximate them, makes page

layout more difficult and color assignment a lot of
guesswork.

b. METAFONT. Instead of putting text in a box

and then discarding it, you can use the METAFONT

program to create 'invisible' fonts. These fonts have

the same dimensions as visible ones, but they have
neither an outline nor a fill- which is to say, they do

not show up in print. By substituting invisible for

visible fonts, you can hide any amount of text. This

method overcomes most of the problems of the box

method; glue can stretch and shrink, and TJ$ can

calculate optimal breakpoints. But it still leaves
you with an 'all or nothing' proposition: either
things are printed in black or they are completely
hidden.

Invisible fonts are often included in I P W and

S l i m packages. They are easy to spot, because
they have an 'I' as the first character of their names

(e.g., the invisible roman font is ICMRIO). If you
can obtain invisible fonts, you may find they are

not a complete set. Fortunately, the method of

creating them is simple. You take a METAFONT

file like CMEXIO .MF and make a copy with the name

ICMEX1O.MF. Then, just before the last line of the
file, type

extra-endchar : =

extra_endchar&"cleari t I ' ;

(so that what you type becomes the second-to-last

line). Then run the file through the METRFONT

program. Everythmg is done as usual, except that

METAFONT erases all character representations;

TFM files and "empty" font files are still created.
When dealing with ordinary text, invisible

fonts are a reasonably effective way to separate

colors. But they do not offer a complete solution.

Surprisingly, they work least well with mathematics,

because they do not hide rules. You see, rules are

not characters, so there is no way to make them
invisible using METAFONT. Even if all fonts are

made invisible, rules still show up as horizontal

bars in fractions and radicals, and as 'overlines' and

L~nder l ine~ ' .

Perhaps the best thing to do with standard

implementations of TEX is to combine invisible

fonts with the box method (above). If something

involves a horizontal or vertical rule, you simply
put it inside a box and, when the time comes,

hide it using the \phantom command. Fractions,

radicals, underlined words, etc., are always typeset

at their natural width, regardless of whether they

are boxed. So the major problems with boxes do

not apply here.
With a good font scheme and judicious use

of the \phantom command, you can effectively
separate colors. You still run into the proofing and

design problem mentioned earlier, since you cannot

see colors next to each other. Also, you may run

into memory problems, because you need to load

most fonts twice (a visible and invisible version).

And, of course, you must keep many more TFM and

PK files on your system. If you are not bothered by

such things, it is possible- though still difficult -

to print colors one at a time.

2. A newer approach

The V W program offers the best method for

separating colors that this author has seen. As

stated above, Vl&X uses scalable font technology,
which has all kinds of advantages over traditional

bitmapped fonts (not the least of which is a signifi-

cant reduction in the number of files). In addition to

offering limitless font sizes, V'l&X can fill characters

and rules with a variety of patterns and grayscales.

This gives one the capability of separating colors
and simulating them in black and white.4

V w ' s method is straightforward. Using

a \ spec ia l command, you specify a 'fillpattern'

for both characters and rules. The syntax is

\special(F#), where # is a number corresponding

to a particular pattern. V m has 22 built-in

TUGboat, Volume 13 (1992), No. 2

patterns and supplies an editor for creating new
ones. Of special interest are patterns 0 (black),
8 (about 50% gray) and 22 (white). With those
three patterns, you can readily design and print a
two-color document. (To simulate additional colors,
you need to select more patterns.)

a. Implementation. One can think of various
schemes for assigning colors with the \special
command. A simple approach, which also resembles
m ' s \font command, uses the following macros:

\def\color#l(\toksQ={#l)

\afterassignment\colorQ\countQ)

\def \colorQ(\expandaf ter\edef

\the\toksQ~\special~F\the\comtQ))3

Briefly, the \color command matches up a

color with a particular fillpattern. The syntax is
\color(name)=#, where the name is written as a
control-sequence and the number corresponds to a
f i l l~at tern .~ For example, if you wanted to assign
fillpatterns to two colors, blue and black, you could
type \color\blue=8 and \color\black=O. Then,
to typeset characters and rules normally, you give
the command \black. To approximate the other
color, you give the command \blue. Thus the line

\black Something old. \blue

Something new. \black

yields

Something old. Svnzething new.

Note: The second \black command is necessary.
Color changes cannot be confined to a group because
the \special command is inherently global (it sends
messages directly to the device driver).

The previous example illustrates colors side by
side. By now the reader has probably figured out
how to separate them. The trick is to re-define
colors. To be specific, any color that should not be
printed is assigned fillpattern 22 (white). Following
this approach, the lines

result in

0 bluc and gray
I b u a d r y I
I l e n g a I

1. Simplify: (3 ~ y - ~) (Q x ~ y 2) iz4 2. Solve using the quadratic formula:

2a2 - 4a - 5 = 0
+I

3. Explain why the sum of two odd numbers 4. Write an equation for the parabola whose
is always even. x-intercepts are -3 and 3 and which

If the first number is 2a + 1 and the contains the point (0,6).

second is 26 + 1, then the sum is 3 y + 2 - 1 8 = 0
2(a + 6) + 2 or 2(a + 6 + I), which is even.

Figure 1. Black = fillpattern 0 ; Red = fillpattern 0.

1. Simplify: (3 ~ y - ~) (Q x ~ y 2) ;:I+ 2. Solve using the quadratic formula:

3. Explain why the sum of two odd numbers 4. Write an equation for the parabola whose
is always even. x-intercepts are -3 and 3 and which

If thp Iirsl ilurnbrr 15 t i ! + 1 ar~d thr contains the point (0,6).

second 1s 2b + I , Lhrr~ 1 1 1 ~ zii~n is 31/+ , ? - 1 6 - 0

2(tr + b) + 2 01 2 (0 + 6+ L) , wh1c.h ib eben

Figure 2. Black = fillpattern 0 ; Red = fillpattern 8.

TUGboat, Volume 13 (1992)' No. 2

b. Textbook Example. Another, more realistic
example of color separation has to do with school
textbooks. It is customary with teachers' editions
of textbooks to print answers next to problems
(exercises). Usually the answers are printed in
a color other than black, in order to distinguish
them from problems. This is an especially common
practice with mathematics textbooks, and it makes
up a good case study for m. While is superb
at arranging problems and answers, it does require
extensions to handle the color separation.

Let us now consider the situation in a little
more detail. Interestingly, color separation is
not the toughest obstacle to overcome. With
V m ' s \ spec ia l command, as described above,
one can easily assign different colors to problems
and answers. The real task is in positioning
answers next to problems. Ideally, one would like to
automate the process, and be economical about it -
that is to say, put answers as close to problems as
possible. This requires some ingenuity. One needs
to figure out how many lines are in a problem, how
wide is the last line, and whether an answer will fit
in the available space.

In the appendix to this article are some macros
which make reasonably intelligent decisions about
the placement of answers. There are four primary
commands, called \beginproblem, \beginanswer,

\endanswer, and \endproblem. They are used in
the following manner.

\beginproblem
general t e x t (problem)
\beginanswer
general t e x t (answer)
\endanswer
\endproblem

The 'begin' and 'end' commands form boundaries
around problems and answers. Incidentally, the
\beginanswer. . . \endanswer field is optional.

The \beginproblem command serves several
purposes: it assigns a color (normally black),
it numbers problems automatically, and it puts
problems inside 'vboxes' so that they can appear
next to each other. The \beginanswer command
assigns a color (red) and looks at current conditions.
If m is in vertical mode, the answer simply begins
a new paragraph. Otherwise, the answer is put
inside an 'hbox' and the last line of the paragraph
is looked at more closely.

What happens next depends on several things:
the 'hsize' and number of lines in the current
paragraph (h and n), the width of the last line (l) ,

and the width of the answer box (a). Roughly
speaking, if a < h - l , the answer is placed at the
end of the last line of the problem. Otherwise, the
answer is 'unhboxed' and begins a new paragraph.6

1. Simplify: (3 ~ y - ~) (~ x ~ y ~) 2 . Solve using the quadratic formula:

2u2 - 4a - 5 = 0

3. Explain why the sum of two odd numbers 4. Write an equation for the parabola whose

is always even. x-intercepts are -3 and 3 and which

contains the point (0,6).

I

Figure 3. Black = fillpattern 0 ; Red = fillpattern 22.

If the first number is 2a + 1 and the

second is 2b + 1, then the sum is 3 y + x 2 - 1 8 = 0

2(u + b) + 2 or 2(u+ b+ 1), which is even.

Figure 4. Black = fillpattern 22 ; Red = fillpattern 0.

154 TUGboat, Volume 13 (1992), No. 2

There is just one more determination: if the answer

fits on the last line of the problem, and if n > 1,

the answer box is lowered a little bit. This helps to

distinguish the answer from any text which appears

above it.

The effect of the macros can be seen in fig-

ure 1. Notice that problems and answers are given

fillpattern 0 (black). In figures 2-4, the prob-
lems and answers are given different fillpatterns;

in other words, the commands \black and \red

are re-defined. No other changes are made to the

input lines. Finally, notice that all text appears

in exactly the same position, regardless of its color

(or more precisely, its fillpattern). The color sepa-
ration is achieved without any extra boxes or font

assignments, and with very little fuss!

Conclusion

The importance of color in modern publishing has

already been emphasized. The author hopes that

the textbook example shows how useful is a good

color separation scheme. The macros presented in
this article are by no means a complete solution, but

they enable m n i c i a n s to perform many important

tasks. Also, they introduce some ideas about color

that warrant further discussion. Here are three
more points that ought to be debated:

1. The separation of colors is best handled by

device drivers; TEX does not need to be concerned

with the fillpattern of characters and rules. The
only situation where 'l&X may need to be actively

involved is in the layering of colors. For example,
a perfectly adaptable system should allow yellow

letters to be printed on a cyan background, without
the cyan showing through.7

2. A color assignment scheme should be
part of plain TJ$ (or IKQX), so that full-color

documents can be shared between various platforms

and implementations. This can be done in many

different ways, perhaps with a font-like command

(as in this article) or else with a numbering system
(as in \newtoks, \newfam, etc.).

3. Not all device drivers need to be color

capable, but they need to be color aware. Even if

a device is monochrome, it can still simulate colors
with grayscales and other patterns. In short, no
driver should be tripped up by color; it should be

able to turn hues into black and white.
Finally, it is hoped that members of the 7&X

community will join together in developing new
standards for the program, especially in regard to
color. Extensions should not be dismissed out of
hand, as if they were unneeded or contrary to the

goals of 7&X. Rather, they should be looked at real

innovations, or as springboards for improving the

program, or at the very least as a reflection of the

needs of publishers. Sooner or later those needs will

be met by a computer system. Wouldn't it be great

if that system were m ?

Appendix

The textbook macros are relatively easy to follow,
except for \measurelastline. This performs some

measurements which are used in the positioning of

an answer (\placeanswerbox). The macro is de-

rived from an example given by Frank ~ i t t e l b a c h . ~

As he indicates, the only way to measure a line is

to go into display mode temporarily. QjX then sets
\predisplaysize equal to the width of the last line

(plus two ems). Simultaneously, \prevgraph is set

to the number of completed lines in the paragraph.
Once the measurements are made, it is nec-

essary to undo the skips and penalties associated

with display mode. This sends TEX back to the end

of the last line, where horizontal (paragraph) mode
can begin again, virtually uninterrupted. There is

one major complication: when TJ$ begins display

mode and then reverses its steps (does an 'unskip'),

the depth of the last line is lost. That is why a

'vrule' is added to the list. It acts like a 'strut'-

in other words, it guarantees that the last line has

the proper depth.

Note: Another fix is needed if an answer is
unusually tall and is placed on the first line of a

problem. In that case, a correction must be made to

the height of the 'vbox' which contains the problem

and answer. That is not difficult to do and is left

to the reader as an exercise.

TUGboat, Volume 13 (1992), No. 2

\def\measurelastline{%

$$\nodisplaylineskip

\global\lastlinenumber=\prevgraf

\dimenQ=\predisplaysize

\advance\dimenQ-2em

\global\lastlinewidth=\dimen@ $$%

\par \unskip \unpenalty

\setboxO=\lastbox

 last linedepth=-\last skip

\vskip-\parskip

\baselineskip=\z@

\lineskiplimit=-\maxdimen

\noindent \hskip\lastlinewidth

\vrule width\zQ height\zQ

depth\lastlinedepth)

V m is a trademark of MicroPress. Inc. See

the listing in TUG Resource Directory, TUG-

boat 12, no. 2, supplement, p. 129.

A similiar point was made by Nelson Beebe in

TUGboat 11, no. 3, p. 335. He noted that

MicroPress "has done very interesting things

with extensions to m," and these should be

studied as "a pilot implementation of some

ideas for W ' s evolution."

Color graphics are something else to consider.

Donald Knuth and others have suggested using
a "grayscale font" to create halftoned pictures.

This is one way to separate colors, as pointed

out by Adrian Clark in TUGboat 12, no. 1.

pp. 157-165. The method, however, requires a
lot of processing power and is device-specific.

Also, it does not help someone who wants to

apply a shade of gray to a regular font.

For a review of V m , see AMS Notzces, 38(2),
February 1991, pp. 105-109. The program

is also discussed by A1 Cameron in Personal

Workstatzon. June 1990.

This is something like the method suggested

by Robert Adams. in TUGboat 11, no. 3.

pp. 405-406. He suggests using commands

such as \black and \red, and tying them into

the Postscript operator setgray.

This approach is not without complications.

For an interesting discussion of line-breaks in
'unhboxed' text, refer to an article by Michael

Downes, TUGboat 11, no. 4.

Knuth implies as much about device drivers:
with the \special command, one can take ad-

vantage of any equipment that might be avail-

able - e.g., "for printing documents in glorious
m n i c o l o r " (m b o o k , p. 229). But he also

says the \special command leads to incom-

patibilities. This author agrees completely, and

thinks that is the best argument for extending

m. \special commands-or at least the
explzczt use of \special -can be avoided only

if there emerges a new set of standards for color
printing.

Refer to Mittelbach's article, " E m : Guide-

lines for Future l&,X Extensions." TUGboat 11,

no. 3, p. 344.

