
Automatic Tables

Definition. Perhaps the best way to define an
automatic table is to describe how it gets created.
Suppose you are a TEX expert and I tell you that I
want you to typeset a table with a specific number
of columns. I also give you the default type of entry
for each column. I am not telling you how many
rows there are, nor how wide any of the entries
might be. Now, it’s up to you to design the table
without the entries. I will then add the entries
myself and expect some good result. Finally, after
I add the entries and print the result, I may not
modify such things as \tabskip glue to make the
table be more pleasing to the eye. So, the table
is created from its content to the paper without
human intervention.

Corollaries. Some obvious conclusions about such
tables: since we do not know the length of the
headings or the text entries, the decision to wrap
headings and/or text must be made automatically.
Since we do not know if the headings to a particular
column are wider than the other column entries
we cannot adopt a simple \hidewidth approach
for fear that our column headings will overlap each
other. Furthermore, we do not know beforehand
how long a table will be. Some of ours are 75 pages
long which prohibits the direct use of \halign due
to memory constraints.

Why automation and why TEX. Our problem
is that our articles are ultimately to come from
a database where a researcher may have selected
various parts of many articles for closer scrutiny. In
spite of the fact that many want to remove paper

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 291

Automatic Tables Using SGML, C, and TEX

Robert McGaffey
Oak Ridge National Laboratory

Building 2506 MS 6302

P. O. Box 2008

Oak Ridge, TN 37831-6302 U.S.A.

Phone: 615-574-0618; FAX: 615-574-6983

Internet: rwm@ornl.gov

Abstract

This paper presents yet another method for doing tables with TEX. This process
is different in that the source of the tables is not TEX but SGML, and there are
no formatting instructions in the input. We present a method whose goal is to
produce the highest quality output under the constraints given. We also present
a set of problems that result from this method and suggest a solution.

from our desks it has not happened yet and will not
for some time. Thus our researcher wants several
copies of the parts of articles he/she has selected on
paper for later study. We do not want anyone at
this point to have to gather all of the parts together
and typeset them before our hero can have them.
We want him/her to be able to say, PRINT this and
turn around to the laser printer (in a few short
minutes) and retrieve the output. Thus our hero
need not know any typesetting language at all to
get the results. And that’s why TEX is being used.
It is the most programmable of all typesetters and
thus the choice most likely to generate a ‘pleasing
to the eye’ paper for our hero to study.

Goals

We want the following:
1. The inputter should be faced with an easy-to-
edit ASCII file.

2. Decimal alignment capability without “extra”
columns.

3. No heading to migrate into the heading on
either side of it as could happen if \hidewidth
is used.

4. Sizing of headings and text entries to be deter-
mined on the fly depending on the discovered
width of both the heading and the column
entries under the heading.

5. Both column spanning and row spanning.
6. Tables of many pages to be handled without
losing either the inherent benefits of \halign’s
measuring or exceeding TEX’s memory capac-
ity.

7. Headings must be automatically migrated from
page to page of a many-page table.

The Algorithm

What I have done. We start with an SGML
instance file. For those of you not in the know,
this is an ASCII file in which all of the elements of
information in a document are labeled with SGML
tags. In our case, we use the tag <CELL> to indicate
a table entry. For example, a numerical field may
be indicated by <CELL>493.7</CELL>, an equation
by <CELL TYPE="eqn">xy/a</CELL>, and text by
<CELL TYPE="text">Robert</CELL>. In the event
that a particular cell spans, say three columns and
two rows, it must be tagged differently, say, <CELL
TYPE="text" C="3" R="2">Robert</CELL>. Note
that TYPE, C, and R are called attributes of the
element CELL. A row consists of the start tag <ROW>,
any number of cells, and the end tag </ROW>.

Headings are given special treatment in our sys-
tem. A main heading consists of <CH1>, the heading,
and </CH1>. Subheadings are included inside of the
main heading they modify. Let’s say we have a table
with the main headings: Main 1 and Main 2. And
that both of these headings have two subheadings
with obvious names. Then the markup of these
headings could be <CH1>Main 1<CH2>Sub 1a</CH2>
<CH2>Sub 1b</CH2></CH1><CH1>Main 2<CH2>Sub
2a</CH2><CH2>Sub 2b</CH2></CH1>. Note that
the headings do not come out in the order needed
by TEX.

And I could go on to describe the rest of the
table elements but I hope the above suffices to show
how the information is delineated in the tables we
use. If not, the Appendix contains a short sample
table and the SGML markup we use for that table.

Each <CELL> comes equipped with another
attribute not yet shown. The COORD attribute
gives the row and column numbers spanned by
the particular entry. Thus if our large CELL
above was entered in the fourth row and the third
column of a table it could be fully described by
<CELL TYPE="text" C="3" R="2" COORD="4-5,3-
5">Robert</CELL>, as it spans rows four and five,
and columns three through five. We do not want
inputters to have to deal with the determination of
the COORD attribute so we have a parser/translator
program and a C program which together generate
the COORD attributes. The translator expands the
table so that all implied (defaulted) attributes are
available to the C program which then calculates
and outputs the COORD attributes.

292 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Robert McGaffey

Now, we have the SGML instance file we
wanted in the first place. The integrity of the
information has been preserved and the coordinates
of table cells are now available for insertion into a
database so that our hero may access, say, the third
and fifth columns of a table while ignoring the other
columns.

Now we use our parser/translator to convert
from SGML to pseudoTEX. We are now left with
many holes in our TEX file. Since we input sub-
headings as part of our heading elements, our table
headings are interleaved; that is, some subheadings
may appear in the document before all of the ma-
jor headings. Our table entries may have white
space before and/or after them. And, we have no
preamble.

Recalling our goals, we want to take advantage
of the \halign ability to premeasure columns and
yet also handle 75 page tables. Well, the only
way to measure the columns is to let TEX do it.
Yet we cannot turn TEX loose blindly or we may
someday exceed its memory capabilities. Also, we
do not ever want to encounter the extra white
space in the last column that Knuth refers to on
page 247 of The TEXbook. What if we let TEX
measure each table entry and report the result to
another program which can then decide the best
width, height, and depth for each column and row
in the table? Then, that program could generate
a suitable TEX file which would then typeset the
table using an algorithm designed to create a result
which is pleasing to the eye.

That’s the plan.
So, we execute a C program to unravel our

headings and to remove unwanted white space.
Also, this is where we add our extra columns to
the aligned decimal columns so that decimals line
up. Note this does not break goal number two, as
the inputter never sees this TEX file. The result is
a TEX file which will run with the proper macros;
but, it will not produce a table. There is still no
preamble. What it does produce is a file giving the
height, width, and depth of every single cell entry
in the table. For the headings and text entries, it
assumes that the heading/entry will be typeset on
one line.

What I hope to do. Here is where I will use
a C program to mimic TEX’s \halign process.
The natural width of every single column will be
determined in two ways: first, by ignoring all
headings, and secondly, by assuming headings are
not stacked. When headings are ignored, text
columns will also be ignored. At the same time,

the natural height and depth of each row will be
determined, also, in two ways. During this phase,
every spanning entry will be stored away in a list
for future processing.

Next, the width of the text columns and the
headings will be determined by trying to mathemat-
ically choose widths to make the table pleasing to
look at. For example, we don’t want a column with
a two inch heading sitting on a column of numbers
whose natural width is one-half inch. I intend to
use a set of parameters which can be tweaked with
experience until a good job is done. We shall see.

Each entry consists logically of a cell we can
create in TEX with the box \hbox{\tskip\cskip
\vbox{\rskip cell entry \rskip}\cskip\tskip}.
The \tskips take the place of \tabskips. \cskips
are used to surround the columns of a cell when
the header is larger than the rest of the column.
\rskips are used to handle vertically spanning
problems. And \vtop or \vcenter will take the
place of \vbox when appropriate.

Now, we have to process our spanning entries.
If the entry already fits inside the rows and/or
columns it spans, then we remove it from the list. If
not, we calculate a row factor which is the amount
we must expand the spanned rows to make our
spanner fit; or, we calculate a column factor; or,
both. Then, since spanning entries can overlap,
we are going to select the smallest factor we find
and increase each of the spanning rows or columns.
This is done by increasing the row’s \rskips or
the column’s \cskips. Now, we reprocess the
spanning entries, since the factors may be changed
by the previous expansion. We then iterate this
process until all of the spanning cells fit. Now
we can modify our aformentioned pseudoTEX file
by inserting \settabs and \+s in the right places.
We only have to make sure that we have correctly
specified each box and that we have left gaps to
handle vertical spanning.

Of course, we are talking theory here, not
reality yet.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 293

Automatic Tables

The Problems

The biggest problems here involve the fact that
a C program that doesn’t know TEX is stuck in
the middle of the process. For example, we allow
footnotes in our tables. If the inputter inserts a
period in the footnote, then the C program may
pick that period to be the decimal upon which
it must align the column. I know this from
experience. I have not solved this problem in theory
or practice. For now, I ignore them. I suspect that
if I cause <FTNOTE> to be translated to something
like \footnoteiii and also output the footnote to
another file so that the C program could never see
it, I could make it work.

The Proposal

The real cure, however, is for someone with more
smarts and time than I have to tackle this problem
without the use of the C program. After all, TEX
always knows more about the text and math and
the curly braces, etc., than I could ever teach a C
program.

294 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Robert McGaffey

Appendix

Sample Table

XYZABC

XYZ ABC
X Y Z A B C

372.466 493.7 45 124 489 280
372.40 493.7 45 124 489 280
372. 493.7 45 124 489 280

832 abc 774 INT
XY/A qrr aaa 799

SGML Representation of Table

<TABLE NUMBER="1" ID="xyzabc">

<TITLE>XYZABC</TITLE>

<CH1>XYZ<CH2>X</CH2><CH2>Y</CH2><CH2>Z</CH2></CH1>

<CH1>ABC<CH2>A</CH2><CH2>B</CH2><CH2>C</CH2></CH1>

<TBODY>

<ROW1><CELL>372.466</CELL><CELL>493.7</CELL><CELL>45</CELL><CELL>124
</CELL><CELL>489</CELL><CELL>280</CELL></ROW1>

<ROW1><CELL>372.40</CELL><CELL>493.7</CELL><CELL>45</cell><cell>124
</cell><cell>489</cell><cell>280</cell></ROW1>

<ROW1><CELL>372.</CELL><CELL>493.7</CELL><CELL>45</CELL><CELL>124
</CELL><CELL>489</CELL><CELL>280</CELL></ROW1>

<ROW1><cell type="eqn" c="2" r="2">XY/A</CELL><CELL>832
</CELL><CELL TYPE="TEXT">abc</CELL><CELL>774
</CELL><CELL TYPE="TEXT">INT</CELL></ROW1>

<ROW1><CELL TYPE="TEXT">qrr</CELL><CELL TYPE="TEXT">aaa
</CELL><CELL>799</CELL><CELL></CELL></ROW1>

</TBODY>
</TABLE>

