An Audio View of (I#)TEX Documents

T.V. Raman
Center for Applied Mathematics

Cornell University

Ithaca NY 14853-6201

Phone: (607)255-7421

Internet: raman@cs.cornell.edu

Abstract

Till now, (I#)TEX has been used to generate typeset documents. This paper
points out an alternative view — the generation of audio renderings. The (I#)TEX
typesetting source captures a lot of document structure which is then used to
typeset the document. This can be exploited to convey document structure in
audio renderings of the document as well. This becomes especially important
when dealing with mathematical documents. Our approach attempts to develop
notions of audio formatting similar to the well-understood notions of visual for-
matting and layout. Our goal is to do for the audio document what (I#)TEX has

done for the printed document.

Introduction

Lack of ready access to current mathematical and
technical literature has been a major stumbling
block throughout my career. I first became inter-
ested in trying to use (I2)TEX to overcome this prob-
lem when I received the IATEX source for the lec-
ture notes in a course on the Design and Analysis
of Algorithms at Cornell. T use a talking computer,
since I am visually handicapped, and availability of
technical documents on-line meant that I could have
them read by my computer. However, I soon realised
the futility of having the computer read out (I#)TEX
source directly. The only other effective solution
available at the time, namely to have the printed
text read aloud, was clearly inadequate. Of course,
I had the option of trying to get the printed output
read out using a reading machine, but in the case of
texts with heavy mathematical content, this contin-
ues to remain impracticable at present. Current OCR
(OpTicAL CHARACTER RECOGNITION technology
is incapable of handling typeset mathematics.
Using the (I#)TEX sources as a starting point
for generating audio renderings was a temptation
too hard to resist. (I#)TEX captures a lot of syntac-
tic and sometimes even semantic information about
the document content, and this information can be
used for more than just typesetting the document.
It could be used equally well in producing high qual-
ity computer-generated audio renderings of the doc-
ument. This is especially true when it comes to
reading mathematical texts. Complicated mathe-
matical constructs, which prove a major stumbling

block for conventional OCR technology, present far
less of a problem, since the (IA)TEX constructs that
are used to produce the final output capture a lot of
information about what is being laid out on paper.
Thus, this information can be effectively captured
at the (I#)TEX source level and exploited in produc-
ing audio. I therefore started work on a system for
generating audio renderings of technical documents
presented in the form of (I#)TEX mark-up source.

A First Attempt

I first worked on a program that would trans-
form (IA)TEX source to a form more suitable to
be read out by a talking computer. Reading the
(IA)TEX source directly is impractical, since you
have to listen to a stream of “backslash” and other
extraneous utterances.

This first attempt resulted in the development
of TEXTALK (Raman, 1991), a program that I con-
tinue to use for my day-to-day work as a gradu-
ate student at Cornell. This program carries out
simple transformations on the (I&)TEX source and
the resulting text can be viewed using standard
UNIX tools. The text which is displayed on the
screen can then be effectively read out by the talk-
ing computer. Thus presented with the expression:

1+5
2

the program transforms the above text to:

The fraction with numerator 1 + square root
of 5 and denominator 2 end of fraction

372 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

This is much more intelligible than the following
cryptic utterance which would be generated if the
(IA)TEX source were being directly read:

dollar dollar backslash frac left brace one plus
backslash sqrt left brace five right brace right
brace left brace two right brace dollar dollar

TEXTALK modified (I#)TEX mark-up source
corresponding to mathematical notation and gener-
ated text that would parallel what a human reading
out the printed result would say. See the Appendix
for a more detailed example. I obtained immediate
direct access to several text books whose authors
kindly agreed to make available the on-line sources.
Currently I also have access to the on-line sources for
the AMS bulletins. Thus, the program makes the
latest mathematical publications accessible to me.

This first attempt uncovered a lot of interest-
ing issues, which then led naturally to the next step,
namely, developing notions of audio formatting
analogous to the well-understood notions of vi-
sual formatting. Though the program as it works
is eminently usable, the audio renderings generated
are not as effective in conveying the complete struc-
ture of the document. Sub-expressions occurring in
a complicated expression make perfect sense when
handled by the system, but it is still difficult to com-
prehend extremely complicated mathematical ex-
pressions, especially in terms of understanding how
the various sub-expressions interact with one an-
other. The example in the Appendix, which shows
the text generated for a complex math expression,
makes these shortcomings explicit.

A Rigorous Approach

The initial implementation revealed the need for de-
veloping a rigorous approach to audio formatting.
It also became apparent that in order to do full jus-
tice to the audio, carrying out transformations based
on a linear scan of the (I#)TEX source itself was
not adequate. Even though (I2)TEX source con-
tains a lot of useful information about document
structure, the earlier approach of string substitu-
tion, i.e., scanning the source and applying simple
transformations fails to fully exploit all of this in-
formation. The transformations carried out tended
to be local in nature as string substitution ignores
global structure and this was identified as a principal
cause of the ineffectiveness in conveying global struc-
ture. The above becomes clear when we compare the
readings corresponding to a complicated expression
generated by a trained and experienced reader with
those generated by the system. See examples 2 and
3 in the appendix for a comparison. In fact even a

An Audio View of (I#)TEX Documents

straightforward transcription of the text as present
in the recordings from the Recordings for the Blind
(RFB) loses a lot of information. This is because the
trained reader inserts appropriate pauses and uses
other prosodic cues to convey the nesting of com-
plicated sub-expressions. This shows clearly that a
system that attempts to read out the text result-
ing from carrying out simple transformations to the
(IA)TEX source will be unable to convey such struc-
tural information. The trained RFB reader is able to
insert appropriate cues into the spoken text only af-
ter having parsed and re-parsed the expression. This
shows a clear need for first constructing higher level
representations of the expression in order to improve
the quality of the audio rendering. Thus, there are
two steps to audio rendering:

e generate the text to be spoken, and

e “audio format” this text, i.e., insert appropriate
cues into the spoken text in order to convey
structure.

A two-step approach. The preceding discussion
shows that a better approach is to subdivide the
problem into:

1. building a high-level model of the document by
parsing the (I#)TEX source, and

2. generating audio renderings by applying appro-
priate audio formatting rules to the resulting
structure.

Advantages. This approach no longer suffers from
the drawbacks alluded to earlier. This is because
the audio renderings that are now driven off a high-
level representation of the document can draw upon
global knowledge of document structure. Thus,
while sub-expressions continue to be formatted for
audio by applying transformations as before, the au-
dio renderings can now capture information about
how various entities appearing in the document re-
late to one another. The human reader conveys
such structural information using prosodic cues.
When using computer-generated speech, the range
of prosodic cues that we can use is limited in com-
parison. However, these can be augmented by using
non-speech audio cues. By non-speech audio cues,
we mean short chords of music, beeps etc. that can
be used to convey non-textual content. These can
prove extremely useful, since they can be used to cue
the listener to extra-textual content without intro-
ducing unnecessary verbiage in the audio renderings.
In addition, the audio documents generated from
such high-level document structures will be capable
of allowing the user to browse the document.

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 373

T.V. Raman

Generating High-Level Document
Models from (I#)TEX Source

This section details the approach we have taken to
solving the first of the two sub-problems outlined
in the previous section. Well-written (IA)TEX doc-
uments capture document structure using macros
designed to reflect logical rather than layout struc-
ture. This fact is heavily relied upon when gener-
ating high-level models, given specific instances of
(IA)TEX documents. This forces certain constraints
on the type of (I&)TEX documents that such a sys-
tem will be able to handle. These constraints are de-
scribed in the following subsections. We then give
an approach for generating such high-level models
for (I#)TEX documents satisfying these constraints.

Defining high-level models. We think of high-
level models of the documents as being given by ab-
stract syntax trees corresponding to a specific lan-
guage L. Different document types satisfy different
languages, and thus have different high-level rep-
resentations. The abstract models we define are
thus specific to a given class of documents. For the
present we will consider the article style of I#4TEX.

A hierarchical structure. Documents conform-
ing to the article style of IATEX have a clear hier-
archical structure. The document divides neatly
into a simple tree structure where the subtrees cor-
respond to various structural units such as section,
subsection, etc. IATEX documents have this struc-
ture clearly tagged by the use of standard IATEX
constructs and this allows us to get at the high-
level structure (Lamport, 1986). Similar structures
are also easy to obtain from well-written TEX doc-
uments where the structure is marked up using
macros from standard packages such as plain TEX
(Knuth, 1984). However, since TEX does not always
insist on the use of predefined structures for mark-
ing up the document, this step can prove difficult
when dealing with raw TEX documents.

Defining a recognizable class of (I#)TEX doc-
uments. TEX as described by Knuth (1984, 1986) is
a powerful typesetting language and embodies many
features of a programming language. By providing
primitives normally found in a programming lan-
guage it affords immense flexibility to the designer
of a document. However, with this flexibility come
a lot of problems, since such power in the hands of
an average user can prove dangerous.

All power corrupts and absolute power cor-
rupts absolutely!

This statement is true in the world of TEX docu-
ments as well. A properly prepared TEX document
uses the power of the language sparingly and avoids
mixing typesetting commands with document con-
tent. Using well-designed formats results in (I#) TEX
source that clearly reflects the document structure.
However, the ease with which new constructs can be
defined in TEX means that the above principles are
often violated.

Documents which rely on absolute commands
like \vskip to achieve document structure by pro-
viding the right visual effect present serious prob-
lems to a program that is trying to build a higher
level model of the document. This is to be expected
since the use of such absolute commands within the
text of an electronic document indicates an assump-
tion that the electronic source will be used only for
typesetting the document. Thus, the first and most
important constraint that we impose on the class
of (IA)TEX documents that we handle is that doc-
ument structure be clearly tagged using only stan-
dard macro packages. Thus our current parser rec-
ognizes an enumerated list in M TEX which is clearly
marked up, i.e., each new item is explicitly tagged
using \item. However, if an author chooses to
mark-up certain items in an enumerated list by us-
ing \item and other items by \foo, where \foo has
been defined by the author to generate the right vi-
sual effects required to signal a new item, the parser
fails to recognize some of the items in the list.

Classifying (I#)TEX macros. The level of com-
plexity present in constructing an abstract model
of a document given its (I#)TEX source is directly
determined by the type of macros used by the au-
thor. Macros can be used to mark up document
structure, for laying out specific structures and ob-
jects, and for achieving visual effects. As pointed out
above, macros are also used to augment predefined
formats. In addition, macros are also widely used
to make the task of keyboarding easier. This multi-
ple use of macros causes some difficulty when con-
structing high-level models of a (I#)TEX document.
In order to define the class of (I#)TEX documents
we can handle, we need to classify TEX macros ac-
cording to how they are used. This will allow us to
clearly define the class of macros that we can handle
in our document recognition step and will, in effect,
define the class of documents that the system will
be able to recognize. Further, this classification step
will also indicate to what extent we should expand
macros during the recognition step and how the ab-
stract model is to capture macro calls.

374 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

In the following, My is used to denote the uni-
versal set of all macros. The various subsets are
denoted by appropriate suffixes.

Graphic. This subset will be denoted by Mg.
Macros that provide primitive typesetting opera-
tions such as the \kern and \hrule control se-
quences in TEX are typical examples of such macros.
They are characterized by their visual nature. Ex-
plicit use of such macros in a document does not
provide sufficient information to allow for the con-
struction of an abstract model.

Graphic macros representing standard ob-
jects. This set of macros will be denoted by M.

The term standard object is used here to re-
fer to commonly occurring entities such as integrals
and fractions. These objects have a standard vi-
sual template according to which they are typeset,
and a properly composed document renders these
visually by using specialized macros that take ap-
propriate arguments. Thus, by their very nature,
such macros capture a functional representation of
the object. When confronted by such macros in a
document, it is unwise to try and expand them any
further in terms of the lower-level control sequences
from which they have been constructed. Thus, the
\frac macro of IATEX contains all the higher-level
information we can get about the object it renders,
and the model we build should capture this call.

Another difficult subset of macros that belong
to this category are special symbols built up with
primitive control sequences. This is typical of com-
plicated combinations of primitive macro calls that
are used to create special visual effects. When build-
ing the higher-level model of the document, we need
to capture the essence of what is being conveyed by
the use of such macros, rather than the result of
expanding the macro call. Thus if \Real has been
built up using a set of primitive visual macros to
produce a real number symbol, the abstract model
should stop by capturing just the macro call \Real
rather than attempting to expand it any further.
In fact, expanding the call will actually eliminate
information.

In an ideal world the principal type of macros
one would encounter when parsing the typesetting
source would be elements of Mp. However, life
is not so simple, and often electronic documents
abound with the use of lower level control sequences.
Further, MgNMo = 0 does not always hold. It can
be argued that the \Real control sequence discussed
earlier actually belongs to M. This would be true
if we did not know what the author intended to rep-

An Audio View of (I#)TEX Documents

resent by the use of the macro, which could often be
the case.

The above is also true of the use of TEX control
sequences such as \atop and \over, which often re-
quire some knowledge of the context in which they
are used in order to come up with a semantic in-
terpretation of their use. Thus, the use of \atop in
a nested subscript often means conjunction, while
it means something entirely different when used in
rendering a Legendre symbol. Consider the follow-
ing example (Knuth, 1984:145, 320 (ex. 17.9)):

E ;50K Chi
1<i<p

1<i<q
1<k<r

which is produced by:

$$\sum_{{\scriptstyle 1\le i\le p
\atop\scriptstyle 1\le j\le q}
\atop\scriptstyle 1\le k\le r}
a_{ij} b_{jk} c_{ki}$$

Macros for simple text substitution. This class
of macros will be denoted by Mr. These macros
are typically used to make the task of keyboarding
easier. In most situations it is safe to expand these
macros since their expansion does not lead to loss of
structural information. However, once again Mo N
Mz = is not always true.

Consider the use of the macro \reader in the
following sentence.

“We are working on a \reader for electronic
documents.”

where \reader has been defined elsewhere as
\def\reader{new exciting reading machine}

This macro clearly belongs to My in the context
in which it is described. Expanding it directly will
lead to the text “We are working on a new exciting
reading machine for electronic documents.” This
can now be easily rendered in audio.

However, viewed from a different perspective,
i.e., the use of \reader as a logo, this macro could
well be said to be in Mp. In the context of au-
dio formatting, we may wish to render the result of
the call to the \reader macro differently.

Recognizing the type of a macro. Recogniz-
ing the class to which a given macro belongs is a
hard problem. In general, no universal classification
will always hold, as is clear from the previous de-
scription. However, we can use some simple heuris-
tics to classify a major subset of the commonly oc-
curring macros. Clearly all the primitive typeset-
ting operations provided by TEX in terms of putting

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 375

T.V. Raman

marks on paper belong to M. Further macros that
are known not to be in Mg but take arguments are
typically in Mo, since the use of macro arguments
normally indicates that a template is being filled up.
Macros that which do not fall into either category
now fall into Ms . Given more information about
the context in which the macro is being used, it
becomes possible to further refine the above classi-
fication.

Summary of constraints. To summarize, here
are the constraints we need to impose on the class
of (I#)TEX documents we can handle:

1. document structure should be clearly marked
up,

2. explicit use of absolute commands should be
avoided, and

3. use of macros should reflect semantics and log-
ical structure rather than physical layout.

These constraints have been introduced while dis-
cussing the global document structure. However,
they hold equally well when considering specific
components of a document, such as mathematical
expressions occurring within the document.

Format-independent techniques of informa-
tion capture. The above discussion also reveals
the need for developing a framework for represent-
ing information in electronic documents indepen-
dent of any single “display” method. TEX goes a
long way in achieving this for mathematical docu-
ments. However, since all the primitive operators
used to achieve this are also available to the av-
erage user, TEX documents do not always conform
to the constraint that information in a document
be represented independent of formatting details.
As these concepts become better understood, we
need to work towards the development of a language
for representing structured information in electronic
documents. Some of this has already been achieved
by sGML (Standard Generalized Mark-up Language,
ISO, 1990) and there is a clear need to carry over
this work to cover mathematical documents as well.
Development of such format-independent techniques
of information capture will allow us to provide alter-
native methods of accessing the same information
structures.

Reading Mathematics Aloud

The previous section pointed out the need for high-
level information capture independent of specific for-
matting techniques. Given high-level information

structures, we need to develop adequate techniques
for accessing this information using alternative per-
ceptual modalities such as audio. This section ad-
dresses the various questions that arise in develop-
ing an effective notational system for mathematics
in the audio world. In order to do this, we first ana-
lyze how visual notation works and attempt to apply
some of what we learn to the audio world.

Features of visual math notation. Traditional
math notation fully exploits the two-dimensional na-
ture of the visual tablet. It is therefore not linear but
achieves conciseness by using subscripts and super-
scripts. It relies on the eye’s ability to move quickly
across the paper, and uses visual cues such as delim-
iters of different sizes to cue these structured move-
ments. Written mathematics is not linear in two
different senses of the term, i.e., space and time.

1. It uses a two-dimensional display.

2. It is not linear in time since the eye is able to
move back and forth across the paper seemingly
at will.

Both of these features are absent in traditional spo-
ken mathematics. Spoken mathematics on tape is
linear in time. In addition, it tends to be wordy
since there is no standard way of alerting the lis-
tener to complicated syntactic constructions other
than describing these verbosely.! This can be di-
rectly attributed to the apparent lack in audio of the
two-dimensional nature of the printed medium. This
lack of two-dimensionality is overcome by the reader
inserting words such as “open quantity” and “raised
to the quantity” in order to cue the listener to the
presence of complex constructions. Use of such cues,
though effective, causes the audio rendering to be
necessarily verbose, making it difficult to grasp the
essence of what is being conveyed. Mathematical
notation relies on conciseness to express high-level
concepts, and as the complexity of the expressions
being handled increases, the resulting verbiage in
the spoken equivalent of the written expression ren-
ders it practically unusable. We need adequate au-
dio substitutes for these features of mathematical
notation if we are to have any hope of effectively
conveying mathematics using audio.

Spoken mathematics. The previous paragraph
takes care to speak of mathematics in audio rather
than merely referring to “spoken mathematics”.
This choice of terminology is intentional. One of the

1'See Chang (1983), which is used as a guideline
by RFB for reading mathematical texts.

376 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

ways traditional spoken mathematics conveys com-
plex inter-relationships between sub-expressions is
to use prosodic cues within the speech (see the ap-
pendix, example 2, for an explicit example). In order
to achieve the full expressiveness of a human reading
mathematics we need to use a lot of prosodic cues
in the speech. Though computers of today can talk
intelligibly they are still a long way from achieving
this degree of expressiveness. We therefore need to
augment the computer’s speech ability by a well-
designed system of audio cues which can then be
used to better convey extra-textual content when
reading complicated expressions.

Multiple channels of audio. Non-speech audio
cues can be synchronized with the speech output.
Thus, by using multiple channels of audio output,
i.e., by having both speech and non-speech audio
cues playing at the same time, and exploiting direc-
tionality of sound, we can offset the disadvantages
resulting from not having a two-dimensional display.
In fact, the audio document is not restricted to a flat
display, and proper use of audio cues can result in
effective communication of complex constructs.

Browsing in an audio document. The previous
subsection addresses the problems resulting from
traditional audio documents being linear in space.
This subsection in turn addresses the problems re-
sulting from the fact that conventional recordings
on tape have been linear in time.

A serious difficulty faced when listening to the
recording of a complex expression is that the listener
is forced to retain the entire expression. Thus, com-
prehending spoken mathematics demands a longer
attention span. In fact, often it becomes impossible
to remember the beginning of a complex expression
by the time one has reached its end. This is clearly
evinced by the reading of Faa de Bruno’s formula
presented in the Appendix of this paper. Visual no-
tation, by using different sized delimiters, different
levels of subscripts, etc., cues these structured move-
ments, and thereby allows the eye to move around
the printed expression. Analogously, we need to al-
low the listener to move around the expression and
access parts of it at will. This will obviate the need
for the listener to retain the entire expression in
memory.

These structured movements can be performed
using the high-level model for the expression that
has been constructed at the recognition step. This
is one of the major advantages of first recognizing
the structure before generating audio renderings.

An Audio View of (I#)TEX Documents

Conclusion

This paper describes an audio view of (I#)TEX doc-
uments. Electronic typesetting source can be used
to generate audio documents as well. In order to
do this effectively, we need to recognize document
structure from the electronic source. Audio render-
ings will then be driven from this high-level struc-
ture. There is a need to develop notions of audio for-
matting analogous to the well-understood notions of
visual formatting. Finally, we need to better under-
stand how visual browsing works in order to build
into the system the ability to provide the same func-
tionality in the audio setting.

Acknowledgements

I would like to thank Prof. David Gries for his help
and advice in my work. I would also like to acknowl-
edge Xerox Corporation for supporting this work
both in the form of summer support during 1991
and 1992 and an equipment grant that enabled the
project to acquire a MultiVoice speech synthesizer.
I would also like to thank Prof. Bruce Donald for his
advice and help and the Cornell Computer Science
Robotics and Vision Laboratory for their support
during the last year.

Bibliography

Chang, Larry A. Handbook for Spoken Mathemat-
ics. Livermore, CA: Lawrence Livermore Na-
tional Laboratory, 1983.

Knuth, Donald E. The Art of Computer Program-
ming, Vol. 1, 2nd ed. Reading, Mass.: Addison-
Wesley, 1973.

Knuth, Donald E. The TgXbook. Reading, Mass.:
Addison-Wesley, 1984.

Knuth, Donald E. TgX: The Program. Reading,
Mass.: Addison-Wesley, 1986.

Lamport, Leslie. IMTEX: A Document Preparation
System. Reading, Mass.: Addison-Wesley, 1986.

International Standards Organization. Informa-
tion Technology — SGML Support Facilities —
Techniques for Using SGML. Draft, 1990.

Raman, T.V. TEXTALK. TUGboat 12(1), page 178,
1991.

Information Processing— Text and Office Sys-
tems— Standard Generalized Markup Lan-
guage (SGML). October 1986. ISO 8879
1986 E.

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 377

T.V. Raman

Appendix: An example of complex math expressions

This appendix gives the TEXsource for a complicated mathematical expression, the transformed text gener-
ated by TEXTALK, and finally the text as read on the RFB recording of the same expression.
Note: This piece of mathematical text is taken from Knuth (1973:50 (ex. 21)):

1. The TEXsource

{\bf 21.} {\em [HM25]} (Faa di Bruno’s formula.)

Let $D"k_x u$ represent the kth derivative of a function u with
respect to x. The ‘‘chain rule’’ states that $D"1_xw = D"1_u w
D"1_x u$. If we apply this to second derivatives, we find $D"2_xw =
D*2_uw (D"1_x u)"2+D"1_u w D"2_x u$.

Show that the {\em general formula\/} is

$$D"n_xw =

\sum_{0\1le j\le n}

\sum_{\scriptstyle k_1+k_2+\cdots+k_n=j

\atop {\scriptstyle k_1+2k_2+\cdots+nk_n=n

\atop {\scriptstyle k_1,k_2,\ldots,k_n\geO }}}

D j_u w \frac{n!Hk_1!{(1!1)}"{k_1} \cdots k_n!{(n!)}"{k_n}}

{(@~1_x W} {k_1} \cdots {(D"n_x w)}"{k_n}.$$

The above piece of TEX code was keyed in while listening to the reading of the expression on the RFB
tape. This shows up an interesting fact about ordering of subscripts and superscripts. In this case the reader
has read the superscript first, and the TEX source reflects this in that it uses D~1_x rather than the more
standard D_x"~1 as recommended in The TEXbook. At this time, there seems to be no reason to choose the
reader’s order of speaking the subscript after the superscript in the general case as against the order one
would use if scanning the standard TEX usage linearly. In the case of Faa de Bruno’s formula, the reader
has used his interpretation of D! in making this choice. In the interest of being able to easily parse the
TEX source, we need to stick to either one of the two orderings when writing TEX documents. The order in
which the subscripts and superscripts are eventually read can then be decided at a later stage in the audio
formatting.

2. Text taken verbatim from RFB’s recording Exercise 21 has a rating of cap h cap m 25

Faa de Bruno’s formula.

Let D super k sub x of u represent the kth derivative of a function u with respect to x. The chain rule states
that cap d super 1 sub x of w equals cap d super 1 sub u of w cap d super 1 sub x of u. If we apply this to
second derivatives, we find that cap d super 2 sub x of w equals cap d super 2 sub u of w times the quantity
cap d super 1 sub x of u quantity squared plus cap d super 1 sub u of w times cap d super 2 sub x of u.
Show that the general formula is cap d super n sub x of w equals the summation from 0 less than or equal
j less than or equal n of the summation over k sub 1 plus k sub 2 plus and so forth plus k sub n equals j, k
sub 1 plus 2 k sub 2 plus and so forth plus n k sub n equals n, k sub 1 comma k sub 2 comma and so forth
comma k sub n greater than or equal to zero The quantity being summed is

cap d super j sub u of w times the fraction n factorial over k sub one factorial times one factorial raised
to the k sub 1 times and so forth times k sub n factorial times n factorial raised to the k sub n the entire
fraction times

the quantity cap d super 1 sub x of u closed quantity raised to the k sub 1 times and so forth times the
quantity cap d super n sub x of u closed quantity raised to the k sub n

3. Transformed text generated by TEXTALK 21. [HM25] (Faa de Bruno’s formula.)

Let D super k sub x u represent the k th derivative of a function u with respect to x . The “chain rule” states
that D super 1 sub x w = D super 1 sub u w D super 1 sub x u . If we apply this to second derivatives, we
find D super 2 sub x w = D super 2 sub u w (D super 1 sub x u) super 2 + D super 1 sub u w D super 2
sub x u . Show that the general formula is

D super n sub x w = sum sub 0 less than or equals j less than or equals n sum sub k sub 1 + k sub 2 +
ellipses + k sub n = j and below that k sub 1 4+ 2 k sub 2 + ellipses + n k sub n = n and below that k sub 1
, ksub 2 | and so on , k sub n greater than or equals 0 D super j sub u w fraction with numerator n factorial

378 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

An Audio View of (I#)TEX Documents

and denominator k sub 1 factorial (1 factorial) super k sub 1 ellipses k sub n factorial (n factorial) super
k sub n end of fraction (D super 1 sub x u) super k sub 1 ellipses (D super n sub x u) super k sub n .

4. The resulting formatted output 21. [HM25] (Faa de Bruno’s formula.)

Let D¥u represent the kth derivative of a function u with respect to z. The “chain rule” states that
Dlw = DlwDlu. If we apply this to second derivatives, we find D?w = D2w(Du)? + Dl wD?u. Show that
the general formula is

1 TL' k &
T = E E J 1 L n n
0<j<n kitkot - tkn=j g . |
k14+2ko+--4nk,=n
k1,k2,...,kn>0

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 379

