
Introduction

TEX is an interactive, terminal based program,
but today’s computing environment is increasingly
window- and mouse-based. Dotex provides a “point
and click” wrapper around TEX and other tools in
the X Window System (Gettys et al, 1990).

Dotex was built out of the frustration of
constantly running an editor and the TEX formatter
during the document preparation cycle. The first
step was to use the built-in history and line editing
functions of the shell command interpreter, but
even this was unsatisfactory. What was needed was
a tool that would centralize all the actions needed
to prepare a document, without having to change
the tools themselves. Out of this need, dotex was
born.

The Tools

The tools needed to implement dotex are the front-
end client, xtmenu, the dvi previewer xdvi and a
text editor. The standard X terminal client, xterm
is used to start dotex and serves as a logging device.

xtmenu. The X client, xtmenu is the heart of
dotex. Xtmenu’s function is to bind actions to
buttons. When a button (or keyboard equivalent)
is pressed, a user-defined action takes place. The
action can be some window-management task, or

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 295

Dotex—Integrating TEX into the XWindow System

Anthony J. Starks
Merck Research Laboratories

Computer Resources, RY86-200

126 Lincoln Avenue

Rahway, NJ 07065 U.S.A.

Phone: (908) 594 – 7288

FAX: (908) 594 – 1455

Internet: ajs@msdrl.com

Abstract

Dotex is a system to integrate TEX tools and automate the format, edit, preview,
and print cycle in the X Window System. Dotex uses a single X Window client,
xtmenu, to provide a simple push-button interface to the TEX formatter, text
editor, and dvi previewer. Other functions such as spell-checking are easily
added. Dotex’s function is to integrate, not change existing tools, providing
a highly interactive “point and shoot” interface to traditional batch-oriented
programs. Dotex’s chief advantage is allowing the user to rapidly visualize
changes in the manuscript, thus facilitating such things as prototyping different
typographic effects.

more importantly, the execution of an arbitrary
program.

xdvi. xdvi is a typical dvi previewer that has
several attractive features:
• It uses the same font bitmaps as the printer, so
that a special set of font bitmaps is not needed
just for the previewer.

• xdvi has a rich, unobtrusive interaction model
for moving around within the dvi file, including
jumping to a particular page and zooming to
different magnifications. A pop-up magnifier
for examining fine typographic details is also
provided.

• Also, recent patches provide much improved
display quality through anti-aliased font display
on color or grayscale X servers.
But the critical feature needed for the success

of dotex is xdvi’s ability to refresh its display when
the dvi file changes.

The editor. Any standard text editor may be
used with dotex. Popular editors usually found
in a X Window environment such as Emacs and
vi will work fine. The editor must be able to
write its buffer without quitting to be effective with
dotex. Window based editors such as xedit are
particularly effective because they don’t need to be
run within an xterm, and already support mouse-
based interaction. The author’s personal favorite is
mx, a programmable mouse-based editor based on

the Tcl language (Ousterhout, 1990). Mx provides
mouse-based selection, multiple windows, and other
niceties such as support for regular expressions.
Another welcome feature for TEX use is the visual
indication of the nesting level of delimiter pairs like
{ } and [].

Other tools. Any program that can aid in doc-
ument preparation can potentially be used with
dotex. For example, spell checking can be added
by running an interactive speller such as ispell.
In the same way, TEX manuscripts may be checked
for grammatical correctness.

Configuration

The dotex shell script. A simple xtmenu script
looks like this:

1. #
2. #
3. # dotex -- automate TeX and tools
4. #
5. # Usage: dotex file
6. #
7. file=$1
8. xtmenu -noquit -stdin <<!
9. "$file.tex" !label

10. TeX %tex $file.tex
11. Edit %mx $file.tex&
12. Preview %xdvi $file.dvi&
13. Print %dvidsk $file|lp -o nobanner -r
14. Done !exit
15. !

Figure 1: The dotex script

It is a unix shell script that defines the buttons
in the main xtmenu window. Line 7 saves the name
of the file that is to be used later in the script.
Line 8 is the execution of the xtmenu program itself.
The option -noquit tells xtmenu not to quit after
an action executed, and the -stdin option means
take the input from the standard input file; in this
case the shell here document (Kernighan and Pike,
page 94) contained in lines 9 – 14. If desired, the
buttons may be arranged horizontally by adding
the -horizontal option.

The lines in the here document are the heart
of dotex. Each line is a label/action pair. The
first string in the pair is a label that manifests itself
as either a button or label in the xtmenu menu.
The second string is either a keyword defining a
label, a system command, or special action. The
label/action pair in line 9 defines a label at the top
of the menu. This label is for identification only

296 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Anthony J. Starks

and no action takes place when it is clicked with the
mouse. Lines whose action-string begin with % are
sent to the command interpreter for execution when
their labels are “pressed” by placing the mouse
cursor over them and pressing the first mouse
button.

Lines 10 – 13 run TEX, the editor, the previewer,
and dvi print tool respectively on the target file.
The action in line 14 terminates a dotex session,
and line 15 terminates the here document.

The order of the buttons is arbitrary, but it is
best to arrange the most used buttons at the top,
and to group the functions logically.

Note that the definitions of the buttons are
not necessarily static. With appropriate X resource
settings, a given key sequence may be defined which
invokes a dialog box in which a new action and/or
label can be defined. This mechanism can be used
to alter command names or parameters.

A dotex Session

To begin a dotex session, type the command:
dotex file

in a xterm window running a shell. To make
effective use of screen space, the shell window
should be about 10 lines long.

This creates the dotex menu, with its buttons
corresponding to the script described above:

file.tex

TeX

Edit

Preview

Print

Done

Figure 2: The dotex menu

Generally a dotex session will have these win-
dows on the screen concurrently:
• the dotex menu,
• the editor window,
• the previewer window, and
• the shell, or log window.
The editor and preview windows correspond

with the Edit and Preview buttons. The shell
window is the xterm used to start dotex. The
standard TEX dialog and other system messages are

displayed here. If the operating system supports it,
dotex can be placed in the background*, and then
other commands may be issued in the shell window.

Editing. Pressing the Edit button creates an
editor window acting on the filename specified in
the dotex command line with .tex appended to it.
This is usually the first action. When the file is
ready to be formatted by TEX, the edit buffer is
written.

Formatting. The next action is running TEX on
the file just written by simply pressing the TeX
button on the dotex menu. The normal TEX dialog
appears in the shell window.

Note that it is best to position the editor
window close to the dotex menu so that the
operation of writing the file and formatting requires
minimal mouse movement.

To achieve tighter integration of the edit-TEX
cycle, the act of writing the editor buffer could
trigger automatic formatting by making the action
of the TeX button execute this shell script:

touch $1.tex
while :
do

if newer $1.tex $1.dvi
then

tex $1.tex
fi
sleep 5

done

Figure 3: Triggered TEX script

which automatically runs TEX when the source file
is newer than the corresponding dvi file. The
responsiveness of the formatting is controlled by
changing the number of seconds in the sleep
command. As an extra bonus, the file would also
be formatted after any other action that accessed
the TEX source such as spell checking.

Previewing. If the TEX run produced no errors,
you can preview the file by pressing the Preview
button. This will bring up a window representing
the output of your TEX run. You can move through
the dvi file, and perhaps magnify sections of the
output.

Printing. When you are ready to print, simply
press the Print button in the dotex menu. This
will run the dvi processor defined in the xtmenu

* Some implementations do not correctly handle
errors during a backgrounded run.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 297

Dotex— Integrating TEX into the X Window System

script on the file just formatted and previewed. Any
messages generated by the dvi driver appear in the
shell window.

Once the windows are arranged, you are free
to move between them, interacting with each as
appropriate.

Arranging the windows. The figure in the ap-
pendix shows a typical arrangement of the windows.
The previewer window is the largest with the other
windows atop it. The shell window is kept small
and unobtrusive near the bottom of the screen. The
dotex menu is also near the Control menu of the
editor, so that writing and TEXing require minimal
mouse movement. Note that to preserve screen
space it is sometimes useful to iconify both the shell
and previewer window. In this arrangement, the
focus is on the edit window and the dotex menu.
The usual interaction is to make changes in the edit
window, press the TeX button, and then view the
file by pressing the mouse on the iconfied previewer
window. Alternatively, the file can be previewed by
bringing the large previewer window to the front of
window stack. When the view is no longer needed,
the previewer window can be pushed to the bottom
of the stack.

The use of the X Window window manager ,
(Gettys, pages S2/49 – S2/52) is important to the
use of Dotex, since the window manager’s job of
window sizing, movement and arrangement effects
the productive use of the system. At a minimum the
window manager is used to raise (place a window
on the top of the stack) and lower (push a window
to the bottom of the stack) the previewer window.
All of these actions force xdvi to re-read the dvi
file and present a fresh display.

Any standard X Window window manager will
work with dotex, but since the predominate actions
are raising, lowering and iconifying windows, a
minimalist setup with the twm window manager
(Querica and O’Reilly, chapters 3 and 10), works
well. This setup is based the work of Pike (page
284, 1988) and presents a simple pop-up menu of
window management functions that look like this:

New
Reshape
Move
Top
Bottom
Icon
Delete

Figure 4: Window Management Popup

These commands in the twm startup file define the
setup:

NoTitle
Button3 = :all: f.menu "winmgr"
menu "winmgr"
{

"New" !"xterm -ls &"
"Reshape" f.resize
"Move" f.move
"Top" f.raise
"Bottom" f.lower
"Icon" f.iconify
"Delete" f.delete

}

Figure 5: twm Window Management Definitions

Benefits

Prototyping typographic effects. The arrange-
ment just presented has many benefits over the
traditional TEX interaction model. For example, it
facilitates the rapid prototyping of different typo-
graphic effects before final printing. As a simple
example, to see the page-breaking effects of altering
a parameter such as page width, the steps are:
• go to the editor window, and the add the
change, for example, \hsize=3in,

• write the edit buffer,
• go to the dotex menu, press the TeX button,
and

• then expose the previewer window.
If the editor supports the undo function, the

change can be easily backed off if the desired effect
did not meet expectations.

Network usage. Dotex runs in the X Window
system so it is inherently network-based. This
means that the appropriate hardware can be used
for a particular document preparation task. For
example, it is possible to run TEX on fast machine
and at the same time use a different machine that
has fast graphics for previewing.

Reduced loading. Once all of the tools are
loaded and on-screen, they remain available to be
used when needed, avoiding repeated startup and
shutdown.

Rapid correction of errors. Because the error
context from the log window and the editor are
both visible, it makes error correction easier, not
to mention having decreased overhead over the
traditional method of having TEX spawn a new

298 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Anthony J. Starks

instance of the editor. The normal mode of
operation becomes the more productive edit-TEX-
preview instead of edit-TEX-print.

Enhancements

The window shell wish (Ousterhout, 1991) could
replace xtmenu as the front-end to TEX and asso-
ciated tools. Wish provides a richer widget set as
well as the ability to define behavior of applications
with the Tcl language. For example, instead of
relying on shell scripts to provide the edit-format
integration, a Tcl-aware editor such as mx could
communicate directly via the send (Ousterhout,
1990) command with a Tcl-aware previewer.

Related Work

Pike (1984) describes an edit-format-preview tool
built on the Blit window system, troff and unix
pipes. This scheme has the advantage of immediate
feedback—as soon as the file is written, it is imme-
diately formatted and presented. Pike’s approach
is to use the operating and window system facilities
to build the tool without changing the basic tools.

VORTEX (Chen 1988, pages 133 – 152) takes the
approach of an incremental formatter/editor system
using TEX and Emacs. The system provides two
distinct but integrated views into the document,
allowing direct manipulation of both.

Availability

All of the tools needed to implement dotex are
publically available on the Internet.

Both xdvi and xtmenu have been posted to
the USENET newsgroup comp.sources.x, and are
archived on ftp.uu.net in
• packages/X/contrib/xdvi.tar.Z, and
• packages/X/contrib/xtmenu_1.1.tar.Z.
xdvi is also available on export.lcs.mit.edu in

the file contrib/xdvi.tar.Z.
The mouse based editor, mx is available on

sprite.berkeley.edu in the file tcl/mx.tar.Z

Bibliography

Chen, Pehong, “A Multiple-Representation Para-
digm for Document Development”, Technical Re-
port UCB/CSD 88/436, University of California,
Berkeley, July 1988.

Gettys, Jim, Philip L. Karlton, and Scott McGregor,
“The X Window System, Version 11”, Software
Practice and Experience, vol. 20, no. S2, pages
S2/35 – S2/67, October, 1990.

Kernighan, Brian W. and Rob Pike, The UNIX Pro-
gramming Environment, Englewood Cliffs, NJ:
Prentice Hall, 1984.

Ousterhout, John K., “Tcl: An Embeddable Com-
mand Language”, Proceedings of the Winter 1990
USENIX Conference, Washington, D.C., January
22-26, 1990.

Ousterhout, John K., “An X11 Toolkit Based on
the Tcl Language”, pages 105-115. Proceedings of
the Winter 1991 USENIX Conference, Anaheim,
CA,

Pike, Rob, “The Blit: A Multiplexed Graphics
Terminal”, Bell Labs Tech. J., vol. 63, no. 8, Part
2, pages 1607 – 1631, 1984.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 299

Dotex— Integrating TEX into the X Window System

Pike, Rob, “Window Systems Should Be Transpar-
ent”, USENIX Computing Systems, vol. 1, no. 3,
pages 279-296, Summer, 1988.

Quercia, Valerie and Tim O’Reilly, X Window Sys-
tem User’s Guide, for X11 R3 and R4 of the X
Window System, Sebastapol, CA: O’Reilly and
Associates, Third Edition, 1990.

Taylor, William, “xtmenu—An X Windows Menu
Program”, Version 1.0, comp.sources.x, vol. 13,
xtmenu, June 17, 1991.

Vojta, Paul, et al, “xdvi—DVI Previewer for the X
Window System”, comp.sources.x, vol. 17, xdvi,
March, 1992.

300 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Anthony J. Starks

Appendix I—A Sample Session

Figure 6: A dotex session

This typical arrangement shows the shell window at the bottom, with the edit window atop the large
previewer window. The dotex menu is to the left of the edit window.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 301

Dotex— Integrating TEX into the X Window System

Appendix II—Customizing dotex scripts
This script is more elaborate than the simple one presented above, and adds spell and grammar

checking. Note the use of horizontal orientation which is useful when there are many menu items. Also note
the blank label used here to provide visual separation of the functions.

file=$1
xtmenu -horizontal -noquit -stdin <<!
"$file.tex" !label
TeX %tex $file.tex
Edit %mx $file.tex
Preview %xdvi $file.dvi&
"" !label
Spell %xterm -e ispell $file.tex
Diction %striptex $file.tex | diction
Print %dvips $file
Done !exit
!

Of course dotex is not limited to plain TEX; this example runs LATEX and adds special BibTEX support.
Also added is an additional button to view the log file.

file=$1
xtmenu -noquit -stdin <<!
"$file.tex" !label
LaTeX %latex $file.tex
BibTeX %bibtex $file
Clean %rm -f $file.aux $file.bbl && echo Work files cleaned.
Edit %mx $file.tex
Log %mx $file.log
Preview %xdvi $file.dvi&
Print %dvips $file
Done !exit
!

This script is used to automate the creation of documents with included figures. Buttons are defined
to popup the figure drawing tool xfig and to translate the figure file to LATEX.

file=$1
xtmenu -horizontal -noquit -stdin <<!
"$file.tex" !label
LaTeX %latex $file.tex
Edit %mx $file.tex
Log %xterm -e less $file.log
Figure %xfig $file.fig&
fig->TeX %fig2dev -Llatex $file.fig >${file}-fig.tex
Preview %xdvi $file.dvi&
Print %dvips $file
Done !exit
!

302 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Anthony J. Starks

Another way to run xtmenu is with multiple menu files, each tailored to a different formatting situation. In
this case, the dotex shell script might look like this:

#
dotex -- automate TeX and tools
(multiple menu file version)
#
Usage: dotex [-l] [-p] [-b] file
#
mdir=/usr/local/lib/xtmenus
option=$1
TeXfile=$2
export TeXfile
case $option in
-l) xtmenu -noquit -m $mdir/latex.xtm&;;
-p) xtmenu -noquit -m $mdir/pictex.xtm&;;
-b) xtmenu -noquit -m $mdir/bibtex.xtm&;;
*) xtmenu -noquit -m $mdir/plain.xtm&;;
esac

Figure 7: A dotex script with multiple menu files

where the different menu files are stored in a special directory /usr/local/lib/xtmenus. All of the menu
files use a common variable, $TeXfile when referring to the TEX source file. The different styles of TEX
use are invoked by using a different option character, as in:

dotex -l file

to run the LATEX specific setup.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 303

Dotex— Integrating TEX into the X Window System

Appendix III—The newer program
/*
* newer -- compare the age of two files
*
*
* Usage: newer file1 file2
*
* A zero status is returned
* if and only if file1 was modified after file2.
*
*
*
*/

#include <sys/types.h>
#include <sys/stat.h>

main(argc, argv)
char **argv;
int argc;

{
struct stat s1, s2;

if (argc != 3)
exit(1);

if (stat(argv[1], &s1) < 0)
exit(1);

if (stat(argv[2], &s2) < 0)
exit(1);

if (s1.st_mtime >= s2.st_mtime)
exit(0);

else
exit(1);

}

