
TUGboat, Volume 13 (1992), No. 4

negative value-which nobody in their right mind

would ever do, but if they do-apparently ' I j jX

goes crazy. So I have to fix that, Ugh.

What I love is when excellent new publications

come out that I know wouldn't have been done at

all without w, and also when I see people - as I
said, Frank and Yannis-spending a considerable

part of their lives doing work that has very high

quality. They are excited just by the chance of

improving the quality of publication. Those are the

things that make me happy.

RG: Thank you very much.

Dreamboat

Moving a Fixed Point

Richard Palais

Abstract

In the past few years there has been increasing discus-
sion of the question LLHas the time has come to make
basic changes to the inner workings of w?". In late
May of 1992, Rainer Schoepf set up a mailing list on
the Internet, called LLNTS-L1l, to discuss the matter. I
started out being completely opposed to the idea of
even the slightest changes to the m code, feeling
that whatever failings 'QX might have, they are best
approached by pre and post processing ("front and
back ends"), and anyway are negligible compared to
the danger of losing the remarkable coherence and in-
terchangeability of 7JiJ software, everywhere and on all
platforms that is enforced by the discipline of having a
single, universally accepted underlying piece of software
(INITEX). However, after following the discussion care-
fully for nearly two months, I was convinced by evidence
that, for certain purposes, 7JiJ was no longer fulfilling
its promise of providing typesetting of uncompromising
high quality, and probably only careful and limited
changes and additions to m primitives could correct
this. What follows is a long message I posted to NTS-
L, outlining a minimalist approach to changing m,
and also a suggested method for implementing changes
to 7$X code that would insure documents written for
standard could still run under the new system. A
number of replies to my message were posted to NTS-L
and others were addressed to me personally via email.
Rather than incorporate these comments by making
appropriate changes to the version I posted, I have

decided to append a short addendum, mentioning a few
of the more important points made in these replies.

This is going to be more a "position paper" than

a simple message. I have been following the NTS-L

mail list discussion with considerable interest and

finally felt that there were so many issues that

I wanted to address and remarks that I wanted

either to agree with or to dispute, that only a

fairly extensive reply would do. Here is a table of

contents:

Section 1:

Section 2:

Section 3:

Section 4:

Section 5:
Section 6:
Section 7:
Section 8:

Section 9:

Introduction

The Many Faces of l&X
A "Standards" Approach to

Solving Portability Problems

The Matter of Compatibility

TjjX as a Front End

m as a Programming Language

Changing the Fixed Point

Summary

Postscript

Introduction

First a short personal introduction. The oldtimers

of the T@ world will perhaps remember me-I

was the founding chairman of TUG, worked closely

with Don Knuth during the early years of w, and

I wrote a column on mathematical typesetting in

the Notices of the AMS for three years, with the

goal of easing the transition in the mathematical

community from the typewriter, along WYSIWYG

road, and into the bright new Promised Land of

m. But my name may well be unfamiliar to more

recent arrivals in the w world, for lately I have

been only a "lurker" on comp.text.tex, and while I
read TUGboat and use w daily for writing my

letters, papers, and books, and in connection with

my duties as an editor of the Bulletin of the AMS,
I have not recently been contributing either to the

development or to the public discussion of m.
Next a disclaimer. While I know my way

around in The m b o o k and have been writing my

own macros and formats since 1978, I consider my-

self an amateur, not at all in the same league with

m p e r t s like Barbara Beeton, Michael Downes,

Victor Eijkhout, Karl Berry, Larry Siebenmann,

Tim Murphy, and others who have been contribut-

ing to this discussion. So I will happily defer to

them on technical matters and hope that they will

correct any of my misstatements. What I would

like to do is take the point of view of a devoted

TUGboat, Volume 13 (1992), No. 4

user; one not so enamoured of rn as to be unable

to see its warts, but one who appreciates what a

unique software miracle TEX is, and is willing to
try to fix things only if assured that it will not

subvert that miracle. One more fact about me

bears emphasizing; as a mathematician I do have a

somewhat biased view of m. For me m is not

just a typesetting system, it is the mathematical

and "mnica l " typesetting system.
I would like to begin with a quotation from Don

Knuth's "Remarks to Celebrate the Publication

of Computers & Typesetting" at the Computer

Museum, Boston, Massachusetts, May 21, 1986, as
printed in TUGboat, vol. 7 (1986) no. 2, pp. 95-98:

Ever since these beginnings in 1977, the
research project that I embarked on was driven
by two major goals. The first goal was quality:
we wanted to produce documents that were not
just nice, but actually the best.. .My goal was to
take the last step and go all the way to the finest
quality that had ever been achieved in printed
documents.. .

The second major design goal was to be
archival: to create systems that would be inde-
pendent of changes in printing technology as much
as possible. When the next generation of printing
devices came along, I wanted to be able to retain
the same quality already achieved, instead of hav-
ing to solve all the problems anew. I wanted to
design something that would still be usable in 100
years. In other words, my goal was to arrange
things so that, if book specifications are saved
now, our descendants should be able to produce
an equivalent book in the year 2086. Although I
expect that there will be a continual development
of "front ends" to 'Ij$ and METAFONT, as well as
a continual develo~ment of "back ends" or device
drivers that operate on the output of the systems, I
designed and METAFONT themselves so they
will not have to change at all: They should be fixed
points in the middle, solid enough to build and rely
on.

Perhaps it is because I was in the audience when

Don made those remarks that they seem particularly
important to me, but in any case, as my contribution

to the NTS discussion, let me attempt to analyse the

TEX system and some of its purported shortcomings

in the light of Knuth's quotation. More specifically,
I would like t o address the following:

QUESTIONS.

1) Are Knuth's two goals consistent, or has the

continual quest for ultimate quality in typeset-

ting exposed problems with TEX so intractible

that they cannot be addressed simply by creat-

ing new and better front and back ends for the

system?

If so, can these "intractible" problems be solved

by changes to that will leave it compatible

with the current version (and in particular able

to pass Knuth's "trip-test").

T h e Many Faces of TEX

TEX is a complex system that can appear as many

things to different people (or even to one person

at different times). In fact it is a little like the

proverbial elephant that the blind men perceived in
so many ways depending on how they "interfaced"

with it.
I think that this many-faceted nature of TFJ

may account, at least in part, for some of the un-

focused and chaotic discourse that has been taking

place on this mailing list. Someone will comment

either critically or in praise of one aspect of the TkJ
system and someone else will contradict that com-

ment, but really in reference to some other aspect of

the system. As anyone scanning comp.text.tex real-
izes, U r n users face a whole different set of prob-

lems than plain TEX users, and likewise A M - W

and I t p ~ S - w provide still other environments,

with differing attendant strengths, problems, and

difficulties. The complaint, repeated several times

in the recent discussions, that is incompetent

to do commutative diagrams, may seem obvious to

a frustrated user of plain TpjX, but it would perplex

a user of V M S - T ~ X who will tell you that it is

an absolute snap using "m" to make beautiful
commutative diagrams, even very complicated ones

with arrows set at almost arbitrary slopes and with

all kinds of decorations on them. Likewise, it is

well-known that designing tables can be a painful

chore with (plain) m . But there are a number

of excellent macro packages around that automate

this problem away. Even that most serious problem

of integrating graphics into l&X can be consid-

ered solved in the right TEX environment. In the

hands of a competent artist, a Macintosh equipped
with Textures, Adobe Illustrator, and a Postscript

printer can create strikingly professional integrated

graphics and text. Yes, I know that this solu-

tion gives up the portability of TFJ documents-

bad things can sometimes even happen between the

proofing device and the high resolution camera copy

typesetter-but the point is that m a n y apparent

problems with TjjX can be solved by coupling Qj?X t o

suitable front and back ends, with n o reprogramming

a t all of itself. Someone suggested that Tj$

TUGboat, Volume 13 (1992), No. 4 427

needs BCzier curves as a new primitive. I will argue
that the BCzier curves belong in an Illustrator-like
program, not in 'IJjX. Solving the problem of
portability is trivial in comparison with the night-
marish difficulties that I foresee as virtually certain
to follow from trying to add anything so foreign as
BCzier curves to m ' s data structures!

A "Standards" Approach to Solving T '
Portability Problems

As just suggested above, I believe that at least
some of the major defects currently perceived in the
w system are not so much problems with 'IQX
itself, but rather arise from the vital requirement
that T&X documents should be completely portable

between various hardware platforms. As long as
we are dealing with w itself, this portability is
assured by the minimal requirement that all true
m systems will produce the same DVI file from a
given source file. But of course a DVI file is only part
of the way to a printed page, so TEX without some
sort of back end is virtually useless. We sometimes
forget that even the software combinations formed
by a set of font glyphs (either bitmaps or outlines)
and a screen previewer or printer driver is already
a back end to w. If we are willing to stick
with the Computer Modern family of fonts in the
bitmapped format provided by METAFONT, then
virtually all screen previewers and printer drivers
will work faultlessly and provide "identical" output
to a tolerance limited only by resolution. The
reason of course is that these fonts are a carefully
specifled standard, on which the writer of a device
driver can completely rely. But of course Knuth
never intended TEX to be limited to the CM family
of fonts, or even to METAFONT designed fonts.
Currently, Adobe's Postscript Type 1 fonts are the
world's favorite, and it has become increasingly the
case that a typesetting system, if it is to remain
acceptable, must be able to deal at the very least
with the basic thirty-five fonts built into PostScript
printers. Of course w was easily up to the
challenge. All that is necessary is to build a TFM
file for each Type 1 font (or better yet an AFM
to TFM conversion program), and add the basic
code to the device driver to handle a Type 1 font.
On any given system this is an easy task, since
again the Type 1 format is a completely specified
standard. I know this was done several years
ago on the Macintosh, and I believe it has also
been done for most of the other major hardware
platforms. There are now even a number of well
hinted Type 1 versions of the basic Computer

Modern fonts available. However even this quite
simple new back end leads to portability problems
between systems. I have never tried it, but I suspect
strongly that if I sent a colleague with an IBM clone
one of my Textures source files that used Times
Roman, it would not work under P C W or emT@
without modification. The problems here are quite
trivial, involving little more than differences in font
naming conventions. All that would be necessary
to regain complete cross-platform portability when
using PostScript fonts is some standardized naming
conventions. I have made a point of this not
because it is a difficult problem that has worried
people much; rather because it is a simple problem
with an easy solution-but one that I think can
be generalized to solve many other 'IJjX problems
without in any way tampering with TJT'J itself.

For a hard example, let's consider a problem
that has been the subject of a great deal of
discussion in the community and in TUGboat,
namely specifying graphics within a W source file.
Of course one possibility that has been mentioned
would be to add a number of graphics primitives
to 'IJjX: lines, circles, BCzier curves, colors, fills,
bitmaps, etc. To my mind this would be absolute
madness, and I find it hard to believe any one
would seriously consider it. The obvious reason
to reject this approach is that it would lead to
a program infinitely more complex than TEX that
could never be made bug free or portable. Moreover
in a few years, when BCzier curves are perhaps
out of fashion, and some new graphics goodies are
all the rage, there will be a call for yet another
"upgrade" of 'IJjX. But a better reason to reject it
is that one should not attempt to brush one's teeth
with a paintbrush or try to paint a picture with a
toothbrush-use the correct tool for each job. And
while Swiss Army knives may make fine souvenirs
and conversation pieces, they are not high quality
tools.

The simple and straightforward solution is to
consider a graphic as just another box (a "bounding
box"), just like any other TFJ box, and let some
appropriate back end worry about what is inside
the box and render it appropriately on a screen
or sheet of paper. Then one can always create
graphics with the very best front end graphics
tools currently available on a given platform, save
it in an appropriate ASCII-based file format, such
as encapsulated PostScript, tell T@X about its
bounding box and its format, and let the back
end take over from there. "But wait a minute,"
you say, "isn't that exactly the old "\specialn

approach?" Of course it is, and I claim that

428 TUGboat, Volume 13 (1992), No. 4

the \ spec ia l mechanism has worked very well
except for the problems with portability that it
has introduced. Now experience has taught that
the correct approach to portability problems is
not to create complex do-it-all programs and then
struggle to make them work on dozens of different
platforms. Rather, one should have single purpose
modules with simple data structures and well-
defined interfaces, and use these to build up more
complex systems. So, I maintain that what is
required to solve the portability difficulties caused
by graphic elements in TjjX is to make a serious
effort to set up cross-platform TEX standards for
various officially recognized graphics formats and
a standard syntax for \specials to go along with
them. It would have to be understood that as
technology advances, older formats will probably die
out and be replaced by newer ones, so there should
probably be a standing committee, perhaps of
TUG, to oversee the promulgation and maintenance
of these graphics standards. In the same way
there could be another standing committee for
setting Tj$ standards for font formats and naming
conventions for fonts.

By the way, while we are on the matter of
fonts and standards, let me complain about what
I feel is a serious failing of the TEX community.
The Grand Wizard, as a sort of parting gift, gave
us a potentially very valuable tool to handle all
sorts of font problems. This was in the form of
a well-defined standard - I'm referring of course to
virtual fonts (VF). I'm a little over my head here
technically, but I believe that as well as solving
the more obvious problems for which they were
introduced, virtual fonts could be used to handle
some more esoteric tricks like adding color and other
attributes to fonts. But my feeling is that we have
dropped the ball. Not enough TF$ systems have
implemented VF to make it a dependable way to
solve cross-platform TEX problems - even Blue Sky
Research, which prides itself in providing a state of
the art TEX environment for their Textures system
on the Macintosh, has yet to implement it.

Let me end this part of the discussion with a
mention of one thing that I feel should neither be
a part of NTS nor even a standardized front end
for it, and that is the user interface. I would not
have brought this up except that there has been
discussion on this list giving favorable mention to
creating a standardized graphical user interface as
part of NTS. But the hardest part of programming
these days, and the most system dependent, is
building a GUI. Even on a single platform, like
the Macintosh, these can break when a new system

update comes out. In general, even with systems as
close in spirit as the Mac OS, Windows, and NeXT,
it is extremely difficult to write a uniform GUI for
a program meant to run on several platforms, and
porting a GUI from one of these to say X-Windows
on UNIX would be even harder. Moreover, each
platform has certain User Interface Guidelines for its
own GUI, and users get quite upset when a program
deviates from them. Since these guidelines differ
from one platform to the next, some users, and most
likely all, would be upset by any uniform choice.
Finally, what is the point? All this would do is
stifle creativity and progress. Let the implementors
of NTS on each platform design and construct the
user interface most suitable for that platform.

The Matter of Compatibility

There has been a lot of discussion on NTS-L
concerning the question of whether NTS should
necessarily be compatible with the current version
of TEX. Until this point I have tried to be calmly
analytical, but this is a crucial issue, and one I feel
very strongly about, so I am going to drop into a
more polemical mode at this point (though I will
try to keep my arguments rational). In a word I
feel that backwards compatibility is an absolute sine
qua n o n for any system that aspires to be accepted

as a L'successor77 to l&Y.

Of course, if a group wants to break off to
design a completely new typesetting system from
scratch that is fine with me-just as long as they
don't use l&X in the name or pretend it is some
sort of "successor" to m. As for me, I would
like to see NTS be an improved version of m,
and for this, it should either be 100% compatible
with m, or if not it should at least default to a
"compatibility mode" which is 100% compatible. I
will suggest later a method by which major internal
changes could be made to Tf?J and still satisfy this
essential requirement, but now let me be precise
about what I mean by compatibility and say why I
feel that this a no-compromise issue.

INITEX is the core m program, the basic
compiled version of the Tj$ code that knows only
W'S primitives. In a certain sense INITEX is m .
It is the implementation of INITEX that determines
whether a "w system is authentic, i.e., passes
Knuth's trip-test, and I think there is little doubt
that INITEX is one of the "fixed points" that Don
was referring to in the above quotation. Let me

argue as strongly as I can that whatever NTS is,
its core typesetting function should be based on

INITEX - a version that will pass the trip-test. The

TUGboat, Volume 13 (1992), No. 4

reason has nothing to do with "keeping the faith".
Rather it is purely practical. If the new system is
compatible with 7&X, it will find ready acceptance.
But if it is not, then the immense installed base of
'l&X users will almost certainly shun it, and it will
consequently be stillborn.

Let me provide some details about the part
of this "user base" that I know something about,
the mathematical community, since I have seen
comments on the mailing list that indicate a serious
lack of comprehension of how sizable this group is
(relative to the TEX community) and how dependent
it has become on m. This in turn may have led
to what I consider a very unfair comment, namely
that TFJ is a "toy for mathematicians". By the
way, while my firsthand knowledge is restricted to
mathematics, I know by hearsay that much of the
following holds true for theoretical physics and also
in many other scientific and technical disciplines in
which mathematical text makes up a substantial
part of papers written in that discipline.

First, virtually all mathematics graduate stu-
dents now write their dissertations in TEX, and
from then on write all their papers in m . Sec-
ondly, nearly all mathematicians below age forty
have learned m, and an increasing number of
the older generation are either switching to T)$,
if they write their own papers, or else are having
their secretaries and technical typists learn T)$
and write their papers in it. A couple of years ago
many mathematicians were still using WYSIWYG
mathematical word processors, but now one sees
very few preprints prepared in any format except

m . There are of course lots of reasons for this
rapid, wholesale switching to m, and probably
different reasons have been important for different
people. Here are a few:

Mathematics set by TEX looks much more
professional.
Setting mathematics with TFJ is faster and
easier (after a painful, but short, learning
curve).
Mathematical text in TFJ format can be sent
over the Internet and works on all machines.
This makes 7&X an ideal medium for joint
authors to use in their collaboration. WYSI-
WYG formats are machine dependent and need
special coding and decoding when sent over the
net.
As a result of the above, the m mathematical
input language is becoming a lingua franca for
the linearization of mathematical text in email

and other ASCII documents, even if they are
not meant for typesetting.

0 The two largest mathematical publishers, the
American Mathematical Society and Springer-
Verlag (and many others besides), now accept
papers in TEX format, either on disc or over
the Internet. Papers submitted this way often
get published more rapidly and of course final
proofreading is minimal.

In any case, the mathematical community now
has become so dependent on and has such a
substantial investment in software, personal macro
files, and source files for the current version of m,
that I believe it is virtually certain to reject any

purported successor system that does not protect

that investment.

Since I seem to be at odds with Mike Dowling
on this matter, let me quote some of his remarks
and point out an important issue he seems to have
overlooked:

(1) Upwards compatibility is a very minor issue for
the user. Theses are written only once; there is
little or no need to recompile under the successor
to after the thesis has been submitted. The
same comment goes for publications. It is easy to
dream up exceptions to this, but I contend that
they are just that, exceptions. (A good counter
example is a script accompanying a course. This
script will be modified and recompiled every time
the course is offered.)

Well, let me dream up another minor exception for
you! If you take a look in your local science library
you will find several feet of shelf space occupied by
the issues of Mathematical Reviews (MR) from just
the past year. In fact, every year the American
Mathematical Society not only publishes many
tens of thousands of pages of books and primary
mathematical journals in m, it also publishes
more tens of thousands of pages of MR. The cost

of producing just one year of MR is well in excess
of five million dollars, and all of MR going back
to 1959 (about one million records) is stored online
in Qj$ format in the MathSci database. People

all over the world download bibliographic data and
reviews from MathSci and use software to
preview or print it. Many others spend hundreds
of dollars per year to lease two CD-ROMs with the
last ten years of MathSci. Obviously the AMS is
unlikely to agree with the above assessment of the
importance of compatibility. In fact they are certain
to protect their investment in MathSci by making
sure that the retrieval system they have invested
in so heavily does not break. And they have a

430 TUGboat, Volume 13 (1992), No. 4

powerful means to protect that investment -with Pascal - and it is the programmability provided by
Knuth's blessing, they own the trademark on the this macro language that gives TEX its remarkable
TEX name and logo, and will not let it be used for flexibility and survivability. However, there is no
a system that does not pass the trip-test. denying that, while TEX macros may indeed always

behave exactly the way (a careful reading of) the
w as a Front End m b o o k says they will, it often takes a lot of study

Early in the NTS-L discussion there was some
discussion concerning extending rn so it could flow
text around pictures, and have other sophisticated
facilities of page layout programs such as PageMaker
or QuarkXPress. This quickly died out, I think
because most people on the list had thought enough
about such matters to realize that typesetting and
page layout are almost orthogonal activities. The
ability of rn to break text into lines, paragraphs,
and pages is aimed at producing printed pages
consisting mainly of text for books and journals.
Of course, such pages frequently do need diagrams,
pictures, and other graphic elements. But these
usually fit neatly inside captioned boxes, with no
need to have text flow around them, and we have
already discussed making such extensions to m .
The page layout programs, on the other hand,
are designed with the quite different purpose of
producing illustrated magazines, newsletters, and
newspapers. These are documents in which the
graphics often outweighs the text, and in which
each page can have a complex, and different pattern
of text and pictures. Building such pages is an
interactive process best handled with a WYSIWYG
interface. The good page layout programs often
have only quite limited word-processing facilities
built in, because the proper way to use them is
not for creating either text or graphics, but rather
to organize into pages text and graphics imported
from other programs.

But this brings up an interesting point. To
what extent would it be possible to import text
typeset by into a page layout program? Cer-
tainly this would not be easy! The way TEX freezes
the shape of a paragraph, once it has created it, is
quite different from the way a normal word proces-
sor works, so one would probably have to create a
special page layout program, one that understood
m ' s data structures and could have an interactive
dialog with Q$ during the layout process. This
would be a tough but worthy undertaking.

'QX as a Programming Language

Many contributors to NTS-L have complained that
the T ' programming language is terrible. In
its favor one should point out that it is Turing
effective-and so just as powerful as say C or

for a non-wizard to find the features responsible
for a macro behaving the crazy way it does, rather
than the way that was intended. Still, most
l&X users do learn easily enough to write simple
substitution macros or even special purpose macros
with parameters. The real problems arise when
one tries to write a complex package of general
purpose macros for others to use in an unknown
environment. One can take the attitude that this
activity is simply intrinsically difficult, and should
be left to the experts, but it seems to me that
those complaining have a good point. Someone who
has learned to program in a standard programming
language should not have to learn another whole
new system of programming; they should be able
to use the familiar syntactic and semantic features
that they are used to for programming m . Since
changing the 'l&X macro language would introduce
the worst kind of compatibility problems, some
other solution is called for. One that comes
to mind is to write a "compiler" whose source
language would be some sort of high-level, ALGOL-
like language, with all the usual features such as
strongly typed variables and scoping rules, and
whose target language would be the TEX macro
language. Creating such a compiler would not be an
easy task, but it would constitute another important
application of Knuth's principle of keeping TEX itself
a fixed point while making "changes" to the rn
system by creating new front ends.

Changing the Fixed Point

I would be a lot happier if I could stop at this point
and conclude that there is no need for any changes
to the 7QX code itself-that all of w ' s perceived
problems can be solved by creating the appropriate
front and back ends. For the overwhelming majority
of m users this is in fact the case. If one is willing
to put up with occasionally having TFJ fall just
short of perfection, or if one doesn't mind making
up for these lapses on m ' s part by doing some
careful manual tuning (my own approach), then
the current is all one will ever need. But
for those who take seriously Knuth's goal of not
compromising on quality, and moreover insist on a
system that permits them to automate excellence, a

TUGboat, Volume 13 (1992), No. 4 431

very good case has been made that rn has several
serious deficiencies hard-wired into it.

Frank Mittelbach made this point very co-
gently and convincingly in his presentation " E - w :
Guidelines for future at the 1990 TUG meet-
ing (published in TUGboat vol. 11 no. 3, September
1990). And Michael Downes amplified and extended
Mittelbach's comments in a message he sent to the
tex-euro mail list, February 20, 1992, in response
to an announcement by Joachim Lammarsch of the
intent of Dante e.V. to set up a working group on
"Future Developments of w. Downes posted a
copy of that message to NTS-L on June 2, 1992, and
I see no need to repeat either of their remarks here.

Instead I would like to suggest a mechanism
to permit necessary changes to be made to rn
code and still maintain compatibility in the sense
described above. The idea is both simple and
obvious. When NTS starts up it will be ordinary
m. However if the first string of characters in the
source is, let us say, "\VERSION=NTSn then the l&X
code will be rolled out of RAM and replaced with
NTS code.

But how are we going to get from 'l&X to NTS?
My own preference would be to take a gradual
approach, analyzing the problems that have been
pointed out in m into families of related problems,
each reasonably independent of the others, and then
tackling these families one by one in stages, from
easiest to hardest, starting from the original w
sources and gradually perturbing them. In this
way NTS could evolve in a controlled way from
the current version of m through a sequence of
versions, each compatible with standard rn, each
new version curing one more of the difficulties that
Mittelbach, Downes and others have pointed out,
and each being carefully tested before going on to
the next stage. I know this may seem like a dull and

. pedestrian way to go about things, particularly to
those wishing to strike out boldly in new directions.
But I think it has the a very good chance of success.
It will not demand many resources to get started
so it stands a reasonable chance of getting off the
ground. And once the first step is taken, well as the
saying goes, nothing succeeds like success.

Summary

Let me now summarize my major points and
suggest ions:

Many of the problems and "missing features"
in the m system that have been discussed
in NTS-L are not really deficiencies of w ,
but rather features omitted as a consequence

of Knuth's decision to limit the functionality
of m , in order to make it stable and trans-
portable. Many of these problems have been
solved in a quite satisfactory manner on one
or more platforms by coupling T)$ with the
appropriate front or back end. What remains

is to solve these problems in a manner that
preserves transportability of sources, and
the way to do this is to specify standard file
formats and other data strucures, and a stan-
dard \special syntax for instructing TfjX to
interact with them.

0 To carry out the above, TUG should appoint
a "Committee on rn Standards". This com-
mittee should have the overall responsibility for
deciding what types of standards are important
to insure that important front and back ends
for can be built in a way that is platform
independent, and it should appoint committees
of experts to promulgate and maintain these
various standards.

0 Nevertheless, an excellent case has been made
that certain specific features of W ' s primi-
tives and coding make it nearly impossible to
automate certain functions required to attain
one of Knuth's goals for w, production of
"the finest quality that had ever been achieved
in printed documents". While most users may
never feel the need for the subtle touches that
make the difference between typesetting that is
merely excellent, and typesetting that is "the
finest quality", for those that do a follow-on to
w , NTS, should be developed.

0 NTS should be backward compatible with
source files from the current version of w .
This means that it should default to a "com-

patibility mode" that would pass the trip-test,
and that any new features that might introduce
incompatibilities should have to be "turned on"
by the user.

0 NTS should be developed in a sequence of
versions, starting with rn and curing its
problems one at a time.

Postscript

As indicated above, I believe it is possible for a
group to design and implement ab ovo a completely
new and state of the art typesetting system-a

for the Twenty-first Century" to use Philip
Taylor's words. As explained above, I also believe
that such a system could be implemented in a way
that would keep it functionally compatible with the
current T)$ system. But, before getting started on

TUGboat, Volume 13 (1992), No. 4

such a massive project, ample consideration should
first be given to some prior considerations:

0 Don't forget what a monumental task the cre-
ation of w was, and remember that its author
is a totally exceptional individual. He is not
only a great computer scientist who happens
to love and understand high quality typogra-
phy, he is also, fortunately, an incredibly good
programmer - and finally he has unmatched
Sitzjleisch. Whole work groups of system ana-
lysts and programmers could easily have failed
in the same task-and if they had succeeded
they would probably have taken longer to cre-
ate a buggy program that runs on a single
platform. And they certainly would not have

put the code in the Public Domain!
Knuth is a tenured Full Professor at Stanford.
While he was designing rn and writing the
code, he had NSF grant support that not only
provided him with the time and equipment he
needed, but also supported a team of devoted
and brilliant graduate students who did an
enormous amount of work helping design and
write the large quantity of ancillary software
needed to make the TEX system work.

a So, consider this question: Where will the
resources come from for what will have to be
at least an equally massive effort? And will
the provider of those resources be willing, at
the end of the project, to put the fruits of all
this effort in the Public Domain? I consider
this point particularly important. I think it
is accepted that it is the combination of the
quality and the PD status of the rn code that
have been the two principal factors responsible
for its remarkable and unique universality. I
doubt that any system that is not PD would
have much chance of weaning away a sufficient
number of rn users to make all the effort
worthwhile.

0 Finally, don't repeat the sad history of ALGOL
68! The ALGOL 60 programming language was
a gem. True, it had its flaws, but these were
well-known and understood, and I think all
of us ALGOL lovers assumed that the ALGOL
68 design committee was going to polish that
gem for us and remove the flaws. Instead they
decided to start over from scratch and came
up with a language that nobody understood,
loved, or used. And that spelled the doom of
poor old ALGOL- who was going to maintain
an ALGOL 60 compiler once ALGOL 68 was

NTS isn't going to kill m, but it would be
sad to waste all that time and effort -and a
great opportunity.

Addendum

A number of people responded to my posting-
some by email directly to me, and others by a
posting of their own to NTS-L. I would like to
thank all who took the trouble to reply, but for
reasons of space I will mention here only a couple
of replies that bear most directly on my previous
remarks.

I would particularly like to thank Nelson Beebe
for pointing out that several of the front and
back ends I was wishing for either already exist
or are in the works. First, and perhaps most
important, Nelson himself has made a proposal for
a standardized syntax for \specials that he has
submitted to the TUG DVI Committee, and this
will appear shortly in TUGboat. Second, Nelson
reminded me of an article by Luigi Semenzato
and Edward Wang in the November 1991 issue of
TUGboat. This describes a LISP front end for rn
macro writing, of just the sort I was calling for
in the section "rn as a Programming Language".
(But I'd still like to see one based on an ALGOL
family syntax!) And finally he pointed out Graham
Asher's article "Inside Type & Set" in the April
1992 issue of TUGboat, describing a program that
does page makeup with lines and paragraphs typeset
using rn code.

Larry Siebenmann sent me a long list of inter-
esting comments, however I will not mention them
here since I hope and expect he will himself write
something on these matters in these pages.

o Richard Palais
Department of Mathematics
Brandeis University
Waltham, Massachusetts 02254

palais@binah.cc.brandeis.edu

"on the way"? Needless to say, even a botched

