
TUGboat, Volume 14 (1993), No. 1

The \CASE and \FIND macros

Jonathan Fine

Abstract

This article is a continuation of the author's Some

Basic Control ~ a c r o s for in TUGboat 13,

no. 1. It introduces macros \CASE and \FIND which

are useful for selecting an action to be performed on

the basis of the value of a parameter. These macros

cannot be used in the mouth of m. Also, some

changes to the Basic Control Macros are reported.

Introduction

First an example is given of the use of the \CASE

macro. and then the macro itself is given. The

next section does the same, for the \FIND macro.

On both occasions, step-by-step examples of the

functioning of these macros are given. A discussion

of pitfalls in the use of the macros follows, and

some other items, and finally a report on the

Baszc Control Macros is given. To the best of my

knowledge. there are no jokes in this article.

Much of the inspiration for \CASE and \FIND

came from studying Mittelbach and Schopf's ar-

ticle A new font selectzon scheme for m macro

packages - the baszc macros in TUGboat 10. no. 2,

while the rest came from the author's own needs.

Independently, Kees van der Laan has devel-

oped a macro \lot which has something in common

with \FIND. It can be found on page 229 of his

article FIFO and LIFO zncognzto, which appears

in the E u r o m 92 proceedings, published by the

Czechoslovak TUG.

In about 1,000 lines of documented code the

author had occasion to use \continue (and the ' : '
variant) 17 times. \ re turn 5 times, and \break

but once. The macro \CASE was used 5 times,

and \FIND twice. By comparison, the 17 primitive

\ i f . . . commands of TkX were used 35 times

altogether.

Acknowledgements The author thanks the ref-

eree for many helpful comments, and particularly

for requesting a more accessible exposition.

1 The \CASE macro

The \CASE macro is similar to the \SWITCH macro

defined in Basic Control. However, it requires

assignment and so cannot be used in the mouth of

w.
By way of an example, suppose that one wishes

t o code a macro \ f r u i t such that

\f r u i t \ a produces apple

\f r u i t \ b produces banana

\f r u l t \ x produces \ e r ror \x

where \ e r ro r is to handle unknown arguments to

the \ f r u i t command.

To code the macro \ f r u i t , the association of

the (key)s \a, \b, etc., with the (actzon)~ apple,

banana, \e r ror \x must be stored in some form or

another. Using the semicolon ' ; ' as a delimiter, the

code fragment

\ a apple ;

\b banana ;

\x \ e r ro r \x ;

will store the data for the \ f r u i t macro. Each of

the lines above we will call an (alternatzve).

The \ f r u i t macro can be coded as

\ de f \ f ru i t #I

C
\CASE #1

\a apple ;

\b banana ;

% defaul t ac t ion

% omit a t your own p e r i l

#1 \ e r ro r #1 ;

\END

3

where the macro \CASE is to search for the token #1

amongst the (key)s and then extract and execute

the associated (action). (This and all other code in

this article is assumed to be read in an environment

where white space characters are ignored. I will

explain later how to set this up.)

Here is the code for the \CASE macro which

supports this style of programming.

\long\def\CASE #I

C
\ long

\def \next ##1 % discard

; #1 % f i n d (key)

##2 ; % (action)

##3 \END % discard

C ##2 3 % copy (action)

\next ; % do \next - note t he ' ; '
3

Perhaps the easiest way of understanding the

\CASE macro is to follow its functioning step by

step. We shall do two examples, \ f r u i t \ b and

\f r u i t \ x . The example of \f r u i t \ a - which is

left to the reader-shows why the ';' is required

after \next in the definition of \CASE.

The expansion of \fruit \b is

36 TUGboat, Volume 14 (1993), No. 1

\CASE \b \a apple;\b banana;\b \error \b ;\END

and now \CASE expands to produce

\long \def \next #l;\b #2;#3\END {#2)

\next ;\a apple;\b banana;\b \error \b ;\END

and so \next will be defined as a \long macro with ; \b
and ; and \END as delimiters. After \next has been
defined the tokens

\next ; \a apple;\b banana; \b \error \b ;\END

remain. Now for the crucial step. By virtue of the
definition of \next, all tokens up to the \END wzll be
absorbed whzle formzng the parameter text for \next.

The tokens ;\a apple form #1. The vztal parameter #2
zs banana. Finally, #3 get \b \error \b;. Thus, the
result of the expansion of \next will be

banana

just as desired. (The m b o o k discusses macros with
delimited parameters on pages 203-4.)

Now for \fruit \x. The first level expansion will be

\CASE \x \a apple; \b banana; \x \error \x ;\END

where the #1 in the default option has been replaced
by \x. As before, \CASE \x will define \next to be
delimited by ;\x and ; and \END. This time, because
\x is not an explicit key within \fruit, the default
(actzon)

\error \x

will be the result of the expansion of \next. As men-
tioned earlier, \error is to handle unknown arguments
to \fruit.

This last example shows the importance of

coding a default option within a \CASE. This option

should be placed last amongst the (a l t e r n a t z v e) ~ .

If omitted a n unknown key will cause the scratch

macro \next to not properly find its delimiters.

Usually, this will result in a error.

2 The \FIND m a c r o

There are situations-for example the problem of

printing vowels in boldface-where several of the

values of t h e parameter will give rise to what is

basically t h e same action. The \FIND macros is

better than \CASE in such situations.

Suppose that the desired syntax is that

\markvowels Audacious \end

is intended t o produce

Audacious

where \end is used as delimiter.

The macro \markvowels can be coded as a

loop, reading tokens one a t a time. It is to be

concluded when \end is read. Should the token

read by \markvowels be a vowel, then this letter

should be printed in boldface, otherwise the token

should be printed in the default font. Vowel or

not, \markvowels is a loop and so after processing

a non-\end token \markvowels should be called

again.

Thus, there are three sorts of actions

0 print token in \bf and continue

0 print token in default font and continue

0 end the loop - i.e. do nothing

and as any of the ten letters aeiouAEIOU give rise

to the first type of action, it is better to use \FIND.

which is similar to \CASE except that a single

alternative can have several keys.

The syntax for \CASE is

\CASE (search token)

% one or more times
(k e y) (op t ion) ;

% don't forget the default

\END

while for \FIND the syntax is

\FIND (search token)

% one or more times
% one or more (k e y) s

(k e y) . . . (k e y) * (op t ion) ;

% don't forget the default

\END

where \FIND will look for the (search token)

(amongst the d key)^, we hope) and having found

it will save the (op t ion) (between * and ;) as it

gobbles to the \END, and then execute the (op t ion) .

So much for the theory. We shall now code

the macros \markvowels and \FIND, and then run

through some examples step by step. Here is the

enboldening macro coded.

\def \markvowels #I

{

\FIND #I

% the (ac t ion) for \end is empty

\end * ;

% vowels
aeiou AEIOU

* {\bf #l) \markvowels ;

% other tokens
#1 * #I \markvowels ;

where \FIND should search for the (k e y) and then

the next * tag. What follows up to the next ; is the

selected (a c t i o n) , which is to be reproduced. The

remaining tokens up to \END are discarded.

TUGboat, Volume 14 (1993), No. 1 37

\long\def\FIND #I

{

\long
\def \next ##I % discard

#I % find (key)

##2 * % discard up to
% next tag

##3 ; % (action)

##4 \END % discard

C ##3 3 % copy (action)

\next % do \next

3

Now for the examples. We shall follow the
expansion of \markvowels AZ\end, step by step.

First, \markvowels A will expand to yield

\FIND A\end *;aeiouAEIOU*C\bf A)\markvowels ;

A*A\markvowels ;\END Z\end

(please note the Z\end awaiting processing after the

\END) and now \FIND expands

\def \next #lA#2*#3;#4\END {#3)\next

\end * ; aeiouAEIOU*C\bf A)\markvowels ;

A*A\markvowels ;\END Z\end

to define \next delimited by A * ; \END. The expansion

of \next will result in

and so the letter A will be set in \bf. The tokens

Z\end have been carried along, from the beginning of

this example. Next, \markvowels is expanded

\FIND Z\end *;aeiouAEIOU*{\bf Z)\markvowels ;

Z*Z\markvowels ;\END \end

and as before \FIND results in

the definition of \next (delimiters Z * ; \END), whose

expansion

\next

\end * ; aeiouAEIOU*{\bf Z)\markvowels ;

Z*Z\markvowels ;\END \end

produces

and so Z is set in the default font. Now for \markvowels

\end, which expands to

\FIND \end \end *;
aeiouAEIOU*{\bf \end)\markvowels ;

\end *\end \markvowels ;\END

and again \FIND defines \next

\def \next #l\end #2*#3;#4\END {#3)\next

\end * ; aeiouAEIOU*{\bf \end)\markvowels ;

\end *\end \markvowels ;\END

(with delimiters \end * ; \END) and the expansion

of \next is empty. (Why is this? The macro \next will

first search for \end. The tokens before this \end form

#I. They happen to be empty, but in any case they

are discarded. Similarly, #2 is empty, and is discarded.

However, #3 is the (action), and in this case it is empty.

The remaining tokens, between \end * ; and \END, form

#4, and are discarded.)

(In terms of \FIND, the \loc macro of van der

Laan can be written as

but there is no easy expression for \FIND in terms

of \loc.)

3 Warnings

There are several ways in which these macros can

trip up the unwary.

No default A default action must be supplied,

and it should be the last option, unless you are

certain that it will never be required. The code

fragment

lacks a default, for when #I is A the fragment

\CASE a

h \help ;

A ;

\END

remains once \lowercase has executed. To avoid

this, either apply \lowercase to the whole \CASE

statement, or write

where \amacro contains the \CASE statement

Meaning ignored The \CASE and \FIND macros

depend on the token passed as parameter, but not

on its \meaning. This token can be a control

sequence or a character token. Thus, the operation

of \markvowels is independent of the meaning of

\end. This is often what is wanted, but is different

from usual \if x comparison.

Braces stripped Selecting an option such as

\group * (\bf stuff 3 ;

within \FIND will result in

\bf stuff

being processed without the enclosing braces - an

error which nearly occurs in \markvowels. This is a

consequence of rules for reading parameters.

The same failure can happen with the \CASE macro.

Braces not supplied Consider the macro

\def \puzzle #I

<
\FIND #I

abc * [#I] ;

def * (#I) ;

#1 * '#I' ;

\END

3

applied to x. The result of \puzzle x will not be

the default ' x' . It will be (x) !
The invocation of \FIND x will produce

\long\def\next #1 x #2 * #3 ; # 4 \END

043)

and as x will replace #I in \puzzle, the parameters

to \next will be (delimiters italicized)

I - abc * [x

#2 <-] ; def *
#3 <- (x) ;
#4 <- x * 'x' \END

and so in this situation the (actzon) for def will

have been selected.

The problem is that #I is prematurely visible.

The solution is to hide it. This is done by writing

abc * ([#I] ;

def * ((#I) ;

which has enclosed the troublesome (actzon)~ in

braces. As mentioned earlier. these braces will be

stripped before the action is executed.

Surplus semicolons Code such as

\FIND #i

0123456789

* \action\one ;

\action\two ;

#I * \default #1 ;

\END

is deceptive. When the parameter is 1 only

\action\one will be performed. (There is an

TUGboat, Volume 14 (1993), No. 1

erroneous semicolon that the eye easily misses.) In

this context the layout

\FIND #I

0123456789
*

\action\one

\act ion\two

,
#l * \default

\END

reads better.

4 Setting up the catcodes

The macros \CASE and \FIND will have confusing

results if the characters ; or * are passed as

parameters. This may happen if the document

author writes \fruit; or \markvowels Abc; def

\end. To prevent this confusion while preserving

the syntax we shall alter some catcodes. We shall

also ignore white space. By setting

\catcoder\; =4 \cat code ' *=4
\catcoder\ =9 \catcode'\--I=9

\catcode'\-^M=9 \catcoder\-=1O

at the beginning of the file containing \CASE and

\FIND, and macros calling \CASE and \FIND, and

placing

to restore values at the end of the file, we can be sure

that any ; or * characters generated by a document

author will not match the private delimiting tokens

; and * used within \CASE, \FIND, and their calling

macros.

The character " has been given a \catcode of

10 which is (space). According to The m b o o k ,

p47, when a character with \catcode (space) is

read from a file, it is "converted to a token of

category 10 whose character code is 32" and so -
can be used to place an ordinary space token into

a macro. Incidentally, it is a consequence of this

rule. and the rules for \uppercase, \lowercase,

and \string (see pages 40-41) that it is impossible

to place a character token with category 10 and

character code zero into the stomach of w.
(The characters ; and * have been given

\catcode 4, which is (alzgnment tab), to help

detect errors. If the error message

! Misplaced alignment tab character ; .

TUGboat, Volume 14 (1993), No. 1 39

or similar with * occurs, then there is an error in

the coding or execution of a \CASE or \FIND macro.)

5 Variable delimiter macros

The macros \CASE and \FIND are particular exam-

ples of what I call varzable delimiter macros. They

are useful for control and selection. Their essence

is to define and execute a scratch macro - \next -

which has as delimiter a token that was originally

passed as a parameter.

Even though rn is fixed and unchanging.

change can be discussed. Currently a macro

parameter character # cannot serve as a delimiter

for a macro. The code

\def\a ## {)

will produce the error

! Parameters must be numbered

consecutively.

and this provides a place for an extension to be

built.

Suppose that ## were allowed in the parameter

text of a macro, to stand for a variable delimiter.

Then \FIND could be coded as

where the expansion of \FIND consists of first

replacing ## by the next token in the input stream

(assumed not { or) or #) and then expanding the

resulting macro.

The code in this style

\long\def\CASE #I ; ## #2 ; #3 \END

C #2 1

for \CASE is not quite right, for it misses the vital

semicolon after \next in the original definition.

6 Benefits of the \noname package

The catcode changes listed above-or rather the

effect of these changes - is obtained automatically

should the macro file be processed by the author's

\noname package, which is described in TUG-

boat 13, no. 4. Should the macro writer wish to

place an ordinary ; or * within a \CASE or \FIND

macro, this can easily be done using \noname.

(Without \noname this will require explicit and

unpleasant dirty tricks.)

The \noname package will also translate the

label ' : ' used by the Basic Control macros into an

otherwise inaccessible control sequence, as it \loads

a macro source file.

by the single-step debugger \ssd which is also

part of the \noname package. (The output has

been lightly edited to improve the appearance, and

particularly to get decent line breaks.)

7 Basic Control - a report

Experience has brought the following changes to the

basic control macros.

In the original article, both ' : ' and \END were

used as delimiting labels. It turns out to be more

convenient to have but one label. Thus one has

\long\def\break #I : #2 {)

\long\def\continue #I : {}

\long\def\chain #1 #2 : #3 { #I)

\long\def\return #1 #2 : { #1 }

and the \f i 'ed variants, but \exit has gone and

\return gobbles to ' : ' rather than to \END. Another

change - the macros are now \long.

Finally, the soft double-fz

is introduced for the situations where one would like

to have \ : : continue, etc., available. (Just write

\ : :\continue instead.)

The macro \switch has so far turned out to

be not so useful. Much of its functionality has been

subsumed by \CASE and \FIND.

o Jonathan Fine

203 Coldhams Lane
Cambridge
CB1 3HY

England
J.FineQpmms.cam.ac.uk

The step-by-step expansion of examples of the

use of the \CASE and \FIND macros was generated

