
Galleys, Space, and Automata

Jonathan Fine
203 Coldhams Lane

Cambridge

CB1 3HY

England

l.Fine@pmms.cam.ac.uk

Abstract

The thread which runs through this article is the concept of a Finite State

Automaton (FSA). It is introduced as a solution to the problem of how to specify

and code the amount of vertical space to be left between the various type of item

which can be placed upon the page. Several methods of coding FSA are described

and compared. One solution is to store the transition table and other data in the

ligature table of a custom font. The best use of this method requires sofware

tools which cannot readily be programmed in TEX, and also some extensions to

TEX. These are discussed, and the article concludes.

Introduction

TEX forms pages by adding paragraphs and other

vertical material such as skips, penalties, titles and

displayed boxes to a galley, which is broken and

presented to the output routine once sufficient ma-

terial has been gathered. Hand setting of movable

type proceeds in the same way. This article is

focussed on how TEX should be instructed to insert

appropriate vertical space and so forth between the

paragraphs and other textual items. The proper use

of space is essential to good typography.

Here are some spacing rules. Add extra space

around a displayed quotation. Add extra space

before a new section. Just after a section title is

a bad place to break the page, so insert a penalty.

Just before a subsection is a good place to break, so

insert a reward - i.e., a negative penalty.

These rules do not tell us what should be done

if a displayed quotation is followed by a new section.

Should one use both extra spaces, or just one, or

something else? It is common practice to specify

'before' and 'after' space for each element, and to

take the larger of the applicable values when one

element follows another. Of course, there will be

exceptions. Similar considerations apply to lists.

When a section title is immediately followed by a

subsection, is t h s a good place to break the page,

or a bad place? It is important to get these details

right, for they can make or break the document (at

the wrong place).

We shall assume that when a paragraph or

other item X is added to the galley, the vertical

space that should be added to the galley before X

is placed upon it depends only on the sort of item

that X is, together with the sort of item last placed

on the galley. Thus, vertical space rules belong not

to the vertical matter type itself, perhaps in before

and after variants, but to combinations of vertical

matter types, applying when type W is followed

by type X. One can think of this as a relational

approach.

If there are five types of paragraph, A to E, then

there are 2 5 different possibilities AA, AB, AC, A D ,

A E , B A , BB, BC, BD, BE, C A , CB, CC, C D , CE, D A ,

DB, DC, D D , DE, E A , EB, EC, ED, EE, and for each

of these a rule is required. Ten types of paragraph

will give 100 possibilities. A large part of this article

is devoted the problem of how one might specify

and implement such a large collection of rules.

When TEX is typesetting the document, it needs

to record the type of the last item on the galley,

which we shall call the state of the galley. Each

time an item is present for addition to the galley,

we have an evenr, which may then change the state

of the galley. Also, each event will cause a possibly

empty action to take place. The action chosen will

depend on the current state and on the event. In

t h s example it is the addition of vertical space. It

may be more compliciated. For example, a format

may allow a section to begin on the current page if

it is at most half full.

Finite State Automata

Here is a simpler example of a machme that has

states, events, and actions. It is a coin-operated

300 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

turnstile, such as is used by the New York subway

system. One approaches the turnstile, places a coin

in the slot, pushes against the bar, whch then gives

and allows admission. The next person d l have to

use another coin to gain admission. Without a coin,

the bar will not move.

Here is a more formal description of the opera-

tion of the turnstile.

\FSA \ t u r n s t i l e \ba r red

{
* \ba r red

@ \push \bar red

@ \ c o i n \open

* \open
@ \push \bar red \admi t-one
@ \ c o i n \open

3

The first line tells us that \ t u r n s t i 1 e is a Finite

State Automaton, whose initial state is \barred.

(This is something we forgot to specify). The line

@ \push \bar red

beneath \ba r red tells us that should the \push

occur event when the \ t u r n s t i l e is \ba r red then

the state is unchanged, and the action is empty. The

line

says that placing a coin in a \ba r red turnstile

changes its state to \open and again has no action.

The interesting line is

@ \push \bar red \admit-one

beneath * \open, which tells us that when the

turnstile is in the \open state (as a result of the

\ c o i n event), a \push will result in the \admit-one

action. In specifying the operation of the turnstile,

we forget to say what should happen when a coin

is placed in a turnstile that is already open. In the

above description, nothing happens.

The operation of the \ t u r n s t i l e has been

described by the transition lines. These begin with

an e, and are followed by an event, and then the new

state, and then, optionally, the action for the event.

To find the transition line for a given existing state

X and event Y, first look for * followed by X in the

description. This is the label for the state X. Now

read on until you reach e followed by Y. T h s is the

transition line to be followed.

The most general FSA with n states and m
events will require n x m transition lines. (The

acronym FSA stands for Finite State Automaton or

Automata as is appropriate). In real applications

t h s number can be reduced, by careful use of two

further properties of the \FSA construction. The

first is that the one or more labels for other events

can intervene between the label for the current

state, and the line for the message. In our case,

the \ t u r n s t i l e will be \open after the \ c o i n event,

whatever the current state. Here is a description of

\ t u r n s t i 1 e with only 3 transition lines.

\FSA \ t u r n s t i l e \barred

* \open
@ \push \barred \admi L o n e
63 \ c o i n \open

3

The second property is a little more complic-

ated. Within the rules for \ t u r n s t i 1 e, # 1 can be

used to stand for the current state, and #2 for the

event. The FSA \echo described here

\FSA \echo \ d e f a u l t

I
* # 1

@ #2 # 1 \message

{
s t a t e = \ s t r i n g # l ,
even t= \s t r ing#2

3
1

starts in the \ d e f a u l t state. Whatever the event, the

state is unchanged. The action is to \message the

current state, and the event that occurred.

Here is a more sophisticated version of \echo.

It is to have two states, \on and \ o f f . The event

\on is to turn change state to \on, the event \ o f f to

change state to \ o f f . All other events are to leave

the state unchanged, and if the state is \on there

should be a state and event \message as before.

i.\FSA \echo \on

2 . i
3. +: \ o f f

4. @ \on \on
5. e #2 \ o f f
6.

7 . * \on

8. @ \ o f f \ o f f
9, @ #2 \on \message

10. i
11. s t a t e = \ s t r i n g # l ,
12. even t= \s t r ing#2
13. 3
14.)

h e s 3-5 can be read as follows. If the state is \off

and the event is \on then the state is changed to

on, otherwise do nothng. Lmes 7-10 say that if the

state is \on and event is \ o f f , then state is changed

to \ o f f , otherwise the state is \on and the \message

is executed.
The order in which the labels and transition

lines appear is very important, and may require

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 301

Jonathan Fine

careful thought to get the best formulation of the

operation of the FSA. By way of an example, consider

coding t h s enhancement of the \ t u r n s t i 1 e. It is

required that the person should pass through the

turnstile before some fixed period of time has

elapsed since the \ co in event. This could be

requested if the turnstile is in fact a security door,

and the \ co in is the entry of an admission code.

This is an exercise, whose answer appears

towards the end of the article. Please assume that

there is a \set-t imer action, which will send the

\time-out event to the \ t u r n s t i l e at the end of the

fixed time period. Please also thnk as to how the

timer should behave if \set-t imer is called a second

time, before the \ti me-out has occurred.

A note on White Space

The macros above, and all other macros in t h s

article, are to be read and understood in a context

when all white space characters (these are space,

tab, end of line, and form feed) are ignored. To

allow access to space tokens, the category code of

- is changed to 10. Knuth has programmed TEX so

that such characters when read have their character

code changed to that of an ordinary space (The

THbook, page 47). In the code below, a - will

produce a space character.

As usual e will be a letter in macro files. In

addition, - will also be a letter. Math subscript, if

required, can be accessed via \sb, whch is provided

in p l a i n for those whose keyboards do not allow

access to -.
The code fragment

\catcode' \ =9 \catcode'\AAI=9
\catcode6\AAM=9 \catcode1\AAL=9
\catcode ' \ -= lo
\catcode '\@=ll \catcode' \ -= l l -

will establish this change of category codes.

Comparison with Erdsting Solutions

The problem of programming the vertical space

between elements is scarcely discussed in The

THbook.

LATEX has the very good idea of having all re-

quests for vertical space in the document processed

by special macros. This allows some resolution of

conflicting rules, such as mentioned in the introduc-

tion. According to 1 atex. tex, "Extra vertical space

is added by the command \addvspace{SKIP), which

adds a vertical skip of SKIP to the document." For

example, the sequence

\addvspace{Sl} \addvspace{SZ)

is equivalent to

\addvspace{maximum o f S 1 , SZ}

and so successive \addvspace commands will result

in only the largest space requested being added

to the page. The complicated question, as to

whether Zpc is larger or smaller than l p c p lus Zpc,

is resolved by an \ i f d i m comparison. The former is

larger.

There is also a command \addpenalty whch

functions in a similar manner. The \@s ta r t sec t i on

command, which is the generic sectioning command

for LATEX, uses these two commands to adjust

the penalty and vertical space before a section,

subsection, etc.

Another solution has been provided by Paul

Anagostopoulos's ZZTEX. One of the most diffi-

cult tasks in creating t h s format, he says (1992,

page 502) "was to ensure consistent vertical space

between elements." His solution was to define six

commands whch produce vertical space. As with

Q X , all requests for vertical space should pass

through these special commands.

To support these vertical spacing commands,

a stack of structures is maintained. Each level

of the stack records the type and amount of the

previous vertical space request, penalties requested,

and other data, or in other words, the state of the

galley. Because a floating figure, for example, will

add items to a galley other than the main vertical

list, the state of several galleys must be recorded.

Both F&X and ZZTEX adopt what may be called

an item-based approach. Before and after a text

item is added to the galley, vertical space and

penalties are added or adjusted. The galley is an

essentially passive object on whch items are placed,

and from whch they are removed. This approach

places restrictions on the use of the galley by the

text items, for whatever is done must be capable of

being undone.

In the FSA approach, responsibility is divided

between the commands whch form the text items,

and the FSA which controls vertical space on the

galley. Each text item, when it begins, passes a

message to the galley. The galley then does what

it will, depending particularly on the last item it

processed, as recorded in its state.

For example, here is a fragment from a galley

space automaton which has states \quote, \ tex t ,

and \section.

;': \quote
@ \ t e x t \ t e x t \vsk ip 3pt-
@ \ sec t ion \sec t ion \vskip lpc-

302 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

This code says that should a \quote be followed by

\ t e x t , then 3 points of space are required. Should a

\ s e c t i o n follow, then 1 pica is required. Similarly

* \ t i t l e
@ \quote \quote \nobreak \ v s k i p 3pt -

will inhlbit a page break between a \ t i t l e and a

\quote, and also provide some extra vertical space.

The author's experience is that it is natural to

express galley spacing rules in terms of an FSA.

The \FSA construction produces code that is simple

to understand, and it gathers all spacing activity

into one location. When errors of implementa-

tion or deficiencies of specification arise, it is not

hard to change the code to embody the improved

understanding.

Those who understand SMALLTALK will realize

that the galley is being modelled as an object which

responds to the messages sent to it by the text item

objects. The state of the galley is memory that is

private to the galley, and not accessed by the text

item objects except through the messages they pass

to the galley. It will also be possible for the galley

to send messages to or set flags for the text items,

for example to suppress indentation on a paragraph

whch immediately follows a section title.

Performance

It is important, when writing macros that will

appear frequently in the code of other programmers,

or whch will often be called as TEX typesets a

document, that these macros be written with an eye

to performance.

There are several aspects to performance. Per-

haps most important is the human side. Are the

macros easy to use, and do they produce code that

is easy to maintain? Do they produce programs that

are robust and simple to debug? Are there any traps

and pitfalls for the unwary? These are the human
questions.

Also a human question is speed of execution.

Do the macros act quickly enough? Important here

is to have a n idea as to how often the macros will

be called. T h s is not the same as how often the

macros appear in the source code. Because TEX does

not provide access to the current time (as opposed

to the time at the start of the job), this quantity will

be measured with a stopwatch.

The t h r d measure of performance is the quant-

ity of memory used for the storage and execution

of macros. This can be crucial. Often, an enlarged

version of TEX the program is required to process

a document whch uses both LATEX and Pg&X. The

capacity of TEX is described by 14 quantities, which

are listed on page 300 of The T~Xbook.

Most important is main memory, whlch is used

for storing boxes, glue, breakpoints, token lists,

macros etc. How much space does a macro require?

This question is asked and answered on page 383

of The Tflbook. Next most important is the hash

size, which limits the number of distinct control

sequence names.

TEX has a virtual memory system, by whch

it stores the less often used data on disc, if not

enough machne memory is available. Even though

TEX'S memory may not be exhausted, if the total

demands on the token memory exceed the actual

machne memory then the resulting use of virtual

memory will slow operations.

These three aspects of performance - ease of

use, speed of execution, and conservation of re-

sources - may pull in different directions. The best

single goal is probably simplicity. It can bring

benefit all round.

To indicate the benefits of the FSA approach,

here is the \ t u r n s t i 1 e recoded using \ i f . . . to

control selection of code to be executed. The state

will be stored as a number by \ t u r n s t i 1 e@. Zero and

one will represent \barred and \open respectively.

The parameter # 1 will be zero or one for \push and

\open respectively. Here is one version of the code

for \ t u r n s t i 1 e.

\ d e f \ t u r n s t i l e #1

{
\i f case # 1 -

\ i f num \ t u r n s t i l e @ = 1-
\ g l o b a l \ charde f \ t u r n s t i l e e O-
\admi t-one

\f i
\ e l s e

\ g l o b a l \ charde f \ t u r n s t i l e e 1-
\f i

3

When used, it will generate an error, because we

have yet to initialise the private macro \ t u r n s t i l e e .

The reader may complain that although the FSA

version is easier than the one just given, the use

of the four new control sequences \open, \push,

\ba r red and \ c o i n is a cost not worth bearing.

There is some merit in ths . However, \open etc. are

being used only as labels or delimiters, not macros.

Their meaning is irrelevant, if indeed they have a

meaning. Thus, existing control words could be

used in their place, or the same labels shared by

several FSA.

To achieve the ultimate parsimony in use of

the hash table, characters can be used as delimiters.

There are many character tokens available, such as

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 303

Jonathan Fine

x with category code 8 (subscript), which do not

appear in the normal use of TEX. They can be used

as delimiters. There are problems in th s . The

programmer would llke to write \on, and have some

other piece of software to consistently translate it

into an unusual character token. In other areas of

computing, such a program is called a preprocessor

or compiler. Also required is a means of loading

macros containing such unusual characters into the

memory of TEX.

There is much to gain by writing TEX macros in

such a manner, and the author is developing such

tools. When available t h s problem of consumption

of the hash table will disappear.

The next concern is main memory. According

to the definition of the \FSA constructor whch

appears later, the second definition of \ t u r n s t i 1 e

will produce macros equivalent to

\def \ t u r n s t i l e
{ \FSA@ \ t u r n s t i l e \ t u r n s t i l e @ \ o f f 3

and

\def \ t u r n s t i l e @ #1 #2

C
* \barred

@ \push \barred

?: \open
@ \push \barred \admit-one
@ \ co in \open

3

which, according to the The THbook, page 383,

will occupy 6 and 18 tokens of main memory

respectively. The overhead of \FSA@ we will ignore,

assuming that is shared between many FSA. By

contrast, the \ i f . . . version as coded occupies

25. This could be reduced to 19 by replacing

explicit numbers with the constants \z@ and \@ne.

The \FSA approach seems to be superior when the

specifications are more complex.

Some Other Approaches

To investigate speed of execution, an ideal problem

will be coded in several ways, and then timed. The

problem is that of an n-state n-event FSA, with no

actions. The control sequence \ s t a te is to hold

a number between 0 and n - 1. The goal is a

macro which takes a single parameter, which we

shall assume is a single digit, and on the basis of

this digit and the existing value of \ s t a te assign a

new value to \s tate.

Here is the solution the author believes will be

the quickest.

\def \qu ickes t #1

C
\ s t a t e \csname

\number \ s ta te #1
\endcsname

3

where lines such as

\expandafter
\chardef \csname 00 \endcsname 3

define control sequences \00, \01, . . . whch contain

the transition data. Clearly, n2 distinct control se-

quences wdl be required to hold this table. Actions

can also be supplied. With the d e h t i o n

event 2 applied to state 1 will change the state to 3

and call \myacti on.

Although quick, t h s approach does take a

large bite out of the hash table, and so is probably

not appropriate for coding the change of state as

items are added to the galley. During a normal

document this code will be executed perhaps 12

times each page, whereas font changes and accents

will be called more often. T h s approach has been

presented as to show how quickly TEX can do the

calculation, if resources are no limitation.

There is another context in which TEX keeps

a record of the state, and adjusts the action in

terms of what follows. As it typesets a word, one

letter after another, it consults the information that

is stored in the . t f m file, to produce kerns and

ligatures. TEX has been carefully programmed to

store this information compactly, and to access it at

h g h speed whle processing the characters. T h s is

the famous ligature and kerning, which has become

yet more powerful with version 3 of TEX.

Suppose that in a font one wants 2 units of

extra space between the characters whenever a 0 is

followed by a 4. The property list . p l file below

contains the script for the character 0. Line 7 says

that when a 0 is followed by a 4, a kern of 2 design

units should be inserted. T h s process is similar to

the operation of the \FSA construction. It is clear

that the transition table of an actionless automaton

can be stored in the ligature table of such a font.

More details of ligatures and kerning may be found

in The METRFONTbook, and Knuth (1989, 1990).

1. (LIGTABLE
2 (LABEL C 0)
3. (KRN C 0 R 1)

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

4 (KRN C 1 R 3)

5. (KRN C 2 R 1)
6. (KRN C 3 R 4)
7. (KRN C 4 R 2)

8. (STOP)

9. 1

A font needs characters as well as ligatures

and kerns. Normally, the characters of a font

are defined, and then the kerns and ligatures are

somethmg of an afterthought. For fonts that encode

FSA, the characters are the afterthought. The lines

(CHARACTER C 0)
(CHARACTER C 1)
(CHARACTER C 2)
(CHARACTER C 3)

(CHARACTER C 4)

will supply 0, 1, 2, 3 and 4 as characters for this

font, all with zero height, depth, and width. Now

encode the remaining transitions into the ligature

table, and call the font fsa5. This font encodes a 5

by 5 FSA.

The problem now is to access this data from

w i t h TEX. We shall assume that the design size

and design unit of the font are both lpt. This makes

the examples easier. First load the font f sa5

\ f o n t \ f s a f sa5-a t - l sp

at one scaled point. The width of the box

\hbox { \ f s a 04 1

in scaled points will be transition table entry for

state 0 and event 4. As before # 1 will be a digit. The

\ s t a t e will be a \chardef. The macro

\de f \ q u i c k e r # 1

{
\ se tbox \ze ro \hbox

{ \ f s a \number \ s t a t e # 1 }
\ c h a r d e f \ s t a t e \wd \zero

1

uses the transition table to determine the new

\ s t a t e .

Finally, here is a variant of the \FSA construc-

tion, specially adapted to t h s ideal problem. The

transition data is stored in the table \slow@, where

the x's indicate where the values should be placed.

\de f \s low@

C
"0 eox e1x e2x e3x e4x
*1 e o x e1x e2x e3x e4x
"2 e o x e1x e2x e3x e4x

*3 eox e1x e2x e3x e4x
"4 e o x e1x e2x e3x e4x

1

The FSA itself will use the numerical value of

\ s t a t e as a delimiter. This is the reason for the

\expanda f te rs.

Finally, for those who are not in a hurry, here

is the same FSA coded using the \FSA constructor

\FSA \s lowes t 0

C
*O eox e1x e2x e3x e4x
"1 eox e1x e2x e3x e4x

"2 eox e1x e2x e3x e4x
?(3 eox e1x e2x e3x e4x

*4 eox e1x e2x e3x e4x

1

where as before the x's indicate where the transition

table should be entered.

Speed of Execution

The macros \qu ickes t , \qu icker , \slow, and \s low-

e s t will now be timed.

Even the slowest macro executes in a fraction

of a second. The stopwatch will be applied not

to one application of a macro, but hundreds or

thousands. Rather than use a \ loop, whch will

Introduce considerable overheads of its own into

the elapsed time, the lines

\ l e t \O \ r e l a x

i d e f \1 {\0\0\0\0\0\0\0\0\0\01
\edef \2 ~\l\l\l\l\l\l\l\l\l\ll
\edef \3 {\2\2\2\2\2\2\2\2\2\21

\def \4 {\3\3\3\3\3\3\3\3\3\31
\def \ 5 {\4\4\4\4\4\4\4\4\4\41

will be read, resulting in macros \n whlch expand

\O exactly 10" times, for n = 0,1 ,2 ,3 ,4 and 5.

Timing tests can now be done by setting \O to an

appropriate value, typing \3, \4 or even \5 at the

console, and starting the stopwatch.

Here is a table of results for an old MS-DOS

personal computer, with a 286 processor running at

1OMhz.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Jonathan Fine

The first column provides a meaning for the

control sequence \O which is repeatedly called by

\1, \2, etc. Column B is the number of iterations

performed, and column C the time in seconds taken

for t h s number of iterations. The raw time taken for

each iteration, the quotient of C by B, is in column

D. Finally, column E is D adjusted to account for the

overheads involved in the timing tests.

The first three lines of this table are there to

help establish a baseline. It may be surprising that

the empty macro executes at about one third of the

speed of the \ r e l a x command. A certain amount of

time will be spent in expanding \O, \1, \2, \3 and

\4. This time should be discounted from the raw
figures, to obtain the time actually executing the

macro being timed. To produce round numbers, the

base line correction has been taken as -200. This

is close enough, given the accuracy on the raw data,

and the purpose of the table.

According to The METAFONTbook (page 317)

TEX will stop reading a ligature table once it has

found a "hit", and thus the entries appearing earlier

in the script for a given label will be found quicker

than those that are later. For the font f sa5 as used

in the test, the new state is the same digit as the

event, but it is coded as a 5 by 5 table, with smaller

digits first. Thus, \qu icker 0 will execute just a

bit quicker than \qu icker 4. The timing tests show

that the difference in time, while significant, is small

in relation to the whole.

It may again be surprising that \s low and

\ s lowes t are relatively so close to each other (al-

though twice the difference is approximately the

time taken by \qu icker) . If performance is an issue,

it seems to be better to move to the \qu icker or

\ q u i c k e s t style rather than produce a custom FSA

whch works through macro expansion alone.

The previous tests relate to a 5 by 5 transition
table. It should be clear that for a 10 by 10 table, the

\ q u i c k e s t approach will be just as rapid as before.

The \s low macro rewritten for 10 by 10 is \ b i g s l ow

which runs at well under half the speed. This is

because there is a quadratic element in the running

time. (Encoding the data requires a replacement

text with over 300 = 3 x 10 x 10 tokens, each of

whch must be read as the helper macro searches

for its delimiters.) The \ b i g q u i c k e r macro uses

the font f s a l 0 , which encodes the general 10 by 10

transition table. The decrease in performance is

slight, compared to the 5 by 5 \qu icker macro.

Why is t h s? When TEX consults a ligature table,

it needs to find the location of the label for the

first of the two characters. It can find t h s data

immediately, because this location is stored as part

of the information for the character. There is no
quadratic element in the running time.

It should be noted that adding actions to the

body of a \FSA will further increase the execution

time, even if they are not selected, because they

too constitute tokens whlch the helper macro has

to read.

The last two lines of the table give the times for

utility macros \ e x t r a c t and \ q u i c k e x t r a c t , whch

will be described later.

The \FSA approach is probably the easiest

to write code for. The \csname . . . \endcsname

approach runs very quickly, but will consume the

hash size. The font ligature table approach gives

code that runs quite quickly, without wasting the

hash size. However, it will not be so easy to write

code for t h s approach, not least because symbolic

names will not be available. Property list files are

not a preferred programming language. There will

be more on this later.

Finally, when it comes to size, the font approach

is a clear winner. The font fsa5, whch encodes the

general 5 by 5 transition table, occupies 47 words of

font information, while the replacement text for the

\FSA approach and also the slightly quicker variant

\s low both consist of 85 tokens. The font f s a l O

encoding the general 10 by 10 table occupies 132

words of font information.

The next section will show how the action

as well as the new state can be recorded by and

recovered from the kern.

Exploring Fonts

Here are some of the important facts, concerning

TEX'S capacity for handling fonts. A font can

contain up to 256 characters. The maximum

number of fonts that may be loaded depends on

the implementation, and is commonly 12 7 or 2 5 5 .

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

The total amount of font information that can be

stored might be 65,000 pieces. Each ligature or

kern occupies one such piece. Before TEX 3 and

METAFONT 2.7, there was an effective limit of 256

on the number of ligatures or kerns in a single font,

but now more than 32,000 are possible. In addition,

TEX 3 has smarter ligatures, whch in particular

allow the ligature tables for several characters to

share common code.

A kern can be positive or negative, and must

be smaller in magnitude than 2048pt. It can be

specified with a precision of 1sp (scaled point), of

whch there are 65536 = 216 in a single point. Thus

there are 268435455 = 228 - 1 possible different

values for a kern. Previously, the transition table

of a FSA has been encoded by setting the kern for a

character pair to be the new state, as a digit. Instead,

the ASCII code for the new state could be stored in

the kern, along with a lot more information.

In addition, each character has a height, a

depth, a width, and an italic correction. Although

each character in a font can have its own width, there

can be at most only 15 different nonzero heights,

nonzero depths, and nonzero italic corrections in a

single font. Each font has at least seven dimensions,

accessed in TEX through the \ f o n t d i men primitive. A

font can have many more such dimensions; at least

32,000 are possible.

The reader may wonder how to use the wealth

of digital information in a font. Here is one method.

It assumes that the kern is to have positive width,

and to be a nine-digit number when writen in units

of sp. T h s kern gives the width to \box\zero.

\wd\zero 123456789 sp % sample value
\def \ e x t r a c t
I

Here is another. The control sequence \count@

is a count register dedicated to scratch purposes.

Note the one rmllion is too large to be stored as a

\mathchar.

\newcount \ m i l l i o n
\ m i 11 i on 1000000

\def \ qu i ckex t rac t

C

Speed of execution for these macros is respect-

able, and indicates that even when the extraction

time is figured in, the font approach will run quicker

than the \FSA approach, except perhaps for the very

smallest examples. For the moment it is enough

to know that digital extraction is practical. What

will be best will depend on the demands of the

applications.

A more substantial problem is t h s . There may

be only 127 fonts available, or perhaps up to 255 if

a really large version of TEX is used. The fonts whch

encode FSA will never get into the final .dv i file

(unless the macros are not workmg properly) and

so d l not trouble the . dv i device driver. However,

to use 10 or 15 of the precious allocations of fonts

for the coding of FSA may be too much. Fortunately,

the same font can be used to store several FSA. In

fact, as long as no FSA has more than 255 distinct

events, the limit is on the total number of states,

across the various FSA being packed into the font.

It seems that in practice most FSA will have rather

more events than states.

Implicit in t h s discussion is the assumption

that TEX 3 is being used. Earlier versions of TEX

are limited to 25 5 kerns and ligatures for each font.

T h s may be enough for particular applications but

even those that do may grow beyond t h s limit over

the course of time. While compatibility with TEX 2 is

desirable, it should not be required.

Is It Practical?

Thls article began by defining the concept of a h t e

state automaton. The one implementation, via the

\FSA macro is easy to code, moderate in its use of

resources, and relatively slow to run. The other,

via font ligature and kerning tables, is quick to run,

impressively economical in resources, and difficult

to program without special tools.
The state of the galley, as we have defined

it, must be recalculated with every new paragraph,

heading, etc. Although not a rare event, it is not

so ubiquitious that the very best performance is

demanded.

Use of the font method will require special

tools that translates code, perhaps written with a

TEX like syntax, into a property list file from which

the . t f m file can be produced using the program

p l t o t f , together with some TEX code for handling

the special actions whch cannot be encoded in the

font information.

Such a tool would not be tremendously difficult

to write, but to ensure that it is available to all TEX

users on all platforms is another matter. The only

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 307

Jonathan Fine

programming language a TEX user can be sure to

have is TEX itself! (one can also hope that the user

has BBTEX and makei ndex available.) T h s seems to

force one to write the tool in TEX. But then it will

be interpreted, not compiled, and so perhaps slow

to run. There have been complaints about TEX as a

programming language, some perhaps well founded.

It is possible to write a compiler/preprocessor in

TEX itself, but it is not as it now stands a tool well

adapted to t h s task.

This line of thought, whch is relevant to

discussion of the future of TEX, will be investigated

further in a separate article.

Solution to Exercise

Here is the solution to the \ t u r n s t i l e problem with

timer. The following rules govern the behaviour.

Whenever \ c o i n occurs, the state becomes \open

and action is \set - t imer , irregardless of the existing

state. Any other event, including \ti me-out, should

result in the \barred state and no action, with one

exception. If the state is \open then a \push will still

\admi t-one and result in a \ba r red state.

\FSA \ t u r n s t i l e \barred

* \open
@ \push \barred \admit-one

\endverba t i m
%%

The \ se t - t imer macro requires a small amount

of numerical information. It must record the

number of clock ticks since the turnstile last became

\open. The \ t i m e r FSA will have two states, \ o f f and

\on. It will respond to events \on, \o f f , and \ t i c k .

The \ o f f event is for internal use only, to turn the

\ t i m e r off when time has run out. Also for internal

use is \ coun te r , which counts the \ t i c k events since

the \ t i m e r was turned \on. The \ se t - t imer macro

in \ t u r n s t i l e should send the \on message to the

\ t i m e r automaton.

\FSA \ t i m e r \ o f f

{
* \on

@ \ t i c k \on
\ i fnum \counter < 100-

\ g l o b a l \advance \coun te r 1-
\ e l s e

\ t i m e r \ o f f
\ t u r n s t i l e \ t ime-out

\f i

" \ o f f
@ \on \on \g loba l \ coun te r O-

e #2 \ o f f

1
\endverba t i m

%%

Finally, it should be noted that the timer will still

receive the \ t i c k event from the clock, whether it

is \on or \ o f f . The last two transition line say that

when \ o f f the timer responds only to the \on event.

Coding the \FSA Macros

The \FSA macro depends on some helper macros

\FSAe and \FSA@e whch are s i d a r to the \CASE

and \FIND macros which the author has defined

elsewhere (Fine, 1993).

The definition of \FSA is a little complicated.

The command

\FSA \mymacro \ i n i t i a l - s t a t e { . . . }

will first of all define the \mymacro to have expansion

\FSA@ \mymacro \FSA\mymacro
\ i n i t i a l - s t a t e

where \FSA\mymacro is a single control word. Next,

\FSA\mymacro is defined to be a two parameter macro

(t h s allows # 1 and #2 to appear in the transition

table of the FSA) whose expansion is indeed the

transition table.

These goals are accomplished by the following

definition.

\def\FSA # 1 % name o f FSA
#2 % i n i t i a l s t a t e
#3 % t r a n s i t i o n s

C
% d e f i n e t h e FSA
\edef # 1

C
\noexpand \FSA@
\noexpand # 1 % name o f FSA
\expandafter\noexpand
\csname FSA\s t r ing # 1 \endcsname
\noexpand #2 % i n i t i a l s t a t e

1

% def ine t h e t r a n s i t i o n s s t o r e
\expanda f te r \gde f
\csname FSA\s t r i ng # 1 \endcsname

I % < s t a t e >
##2 % <event>

{. #3 1
1

With these values, the result of expanding

\mymacro \event is

\FSA@ \mymacro \FSA\mymacro
\ s t a t e \event

and so a start can be made on the coding of the

helper macro \FSA@. It must expand the transitions

TUGboat, Volume 14 (19931, No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

store \FSA\mymacro, passing \ s t a t e and \event as

parameters, and then look withn it for the current

state and the following transition line. The scratch

helper macro \nex t will search the expansion of

\FSA\mymacro. This macro can readily find the

\ s t a t e and the \event, and from t h s the new state.

To find the action is more difficult, because the

action portion is not delimited by a fixed token.

The next token after the action may be a @, or it

may be a *. Or it may be that the transition line

selected is at the very end of the transition store.

If not, then the rest of the transition store must be

discarded. To help take care of these possibilities,

helpful delimiters are placed after \FSA\mymacro.

Here is the code for \FSA@. Like \CASE and

\FIND, it is a selector macro.

\def\FSA@ # 1 % name

#2 % t r a n s i t i o n s s t o r e
#3 % < s t a t e >

#4 % <event>

{
\de f \nex t ##1 % d i s c a r d

* #3 % f i n d <s ta te>
##2 % d i s c a r d

@ #4 % f i n d <event>

##3 % new s t a t e
##4 % <ac t ion> + r u b b i s h

@ % nex t t r a n s i t i o n l i n e

I
% r e d e f i n e t h e FSA

\gde f #1 % name

{
\FSA@

1 % name

#2 % t r a n s i t i o n s s t o r e

##3 % new s t a t e

1

% prepare t o e x t r a c t t h e a c t i o n
\FSA@@ ##4 * % may need t h i s *

J

\expanda f te r
\ n e x t #2 % t r a n s i t i o n s s t o r e

#3 % < s t a t e >
#4 % <event>

@ % may need a t r a i l i n g @

\FSA@ % f i n a l d e l i m i t e r

1

Careful thought is required to follow the ex-

ecution of \FSA@. First \nex t is defined, with the

existing state and the event as delirniters. This

allows \ n e x t to extract information from the trans-

ition store. In fact, \nex t must find the current

state, and then the event w l c h occured, and then

extract the action, and then dward the rest of the

transition store, and then execute the action.

The transition store should be expanded, with

the state and event as parameters, before \nex t

is called. The part of the transition store which

lies before the new event and action should be

discarded, as should the part which lies after the

event and action. The delimiters supplied to the

definition of \nex t will discard the before portion.

The new state is found immediately after the old

state, in the expansion of \next , but the action is

not so easy. It may be delimited by .'- or by @,

depending on whether what follows is another line

for the same state, or the script for another state. If

the action is the last line of the transition store, the

action will not have a delimiter at all. This range of

possibilities is a consequence of the flexible syntax

allowed in the \FSA command. The trailing tokens @

\FSA@ at the end of the expansion of \FSA@ are there

to allow the action to be extracted, and the rest of

the transition store to be discarded.

The execution of \nex t will result in \mymacro

being defined. The new value will be the same as

the old, except that \ s t a t e wdl have been replaced

by the new state. Now to extract the action, which

lies in the tokens formed by the expansion of the

transition store, which were not absorbed by \next.

Suppose that the action had been delimited by an *
rather than an @ in the transition store, or even by

nothlng at all. In either of these cases, the action -

whch is picked up and copied by \nex t - will now

be delimited by a *. So, all that remains is to pick

up the action, throw away the rubbish, and perform

the action. This is done by a final helper macro.

\def\FSA@@ #1 % < a c t i o n >
* % d e l i m i t e r

#2 % <d iscard>
\FSA@ % d e l i m i t e r

{ 1 } % a t l a s t , t h e a c t i o n

The very last token(s) in the expansion of

\mymacro come out to be the action for the curent

state and event, as determined by the transitions

store. The action is not called until the FSA has

finished its activities. Thus, the action can take para-

meters, if need be. T l s may be helpful. In SMALL-

TALK, messages are allowed to have parameters.

Bibliography

Anagnostopoulos, Paul. "ZZTEX: A macro package for

books", TUGboar, 13 (4), pages 497 - 505, 1992.

Fine, Jonathan. "The \CASE and \ F I N D macros",

TUGboat, 14 (l), pages 35 - 39, 1993.

Knuth, Donald E. "The new versions of TEX and

METRFONT", TUGboat, 10 (3), pages 325 - 328,

1989.

Knuth, Donald E. "Virtual Fonts: More Fun for Grand

Wizards", TUGboat, 11 (I), pages 13 - 23, 1990.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

