
Sorting withm TEX

Kees van der Laan
Hunzeweg 57, 9893PB

Garnwerd, The Netherlands
05941 1525

Internet: cgler i s c l . rug. nl .

Abstract

It is shown how sorting -numbers and lexicographic - can be done completely
within TEX. Lexicographic sorting allows words with ligatures and diacritical
marks. As applications I selected sorting of address labels, and sorting and
compressing i ndex . tex, Knuth's index reminders file. It is claimed that a set
can be sorted within TEX once the ordering of the set is defined and encoded in a
comparison macro, in compliance with the parameter macro \cmp.

Introduction

This paper is an abridged version of the original
"Sorting in BLUe" which has appeared in NTG's
MAPS93.1. In this version I strove to get across the
flavour of what can be done within TEX with respect
to sorting.

The original version-not limited by space,
some 20 pages - contains the in-depth treatment,
the detailed explanations, the various abstractions
(parameterization over the comparison operation,
sorting process, lexicographc ordering, and the
handling of accents and ligatures), more examples,
all the macro listings, as well as a listing of my test
driver. Apart from sorting the storing of the data
and the final typesetting-with its parameter for
separation, and for numbers the use of range nota-
tion- is dealt with in that paper. I also included an
extensive list of references.

In this paper I'll show, and now and then ex-
plain, how to use the Ben Lee User level sorting
macros \ s o r t n -for number sorting, \sor taw -

for sorting ASCII words, and \ so r tw - for general
lexicographic sorting. At the lower level I provided
in the appendices the blue collar macros \heapsort

and \ qu i ckso r t .

Definitions and notations. A sequence is defined as
a row of numbers or words, respectively, separated
by spaces. The structure \csname(k)\endcsname is
associated with an array with index k = 1 , 2 , . . . , n.
To denote in the documentation a value pointed
by the number (k), I made use of \va1{ (k) I ,
with \ de f \ va l #l{\csname#l\endcsname). Macro
names take suffix -n, -w, when specific for number
and word data respectively. For example, \ s o r t n

stands for sort numbers, \p r tw stands for print

words. I have typeset the in-line results of the ex-
amples in bold face.

I have used the shorthand notation \ea,

\nx, and \ag for \expandafter, \noexpand, and
\a f te rg roup , respectively. \k is used as counter
to loop through the values 1 ,2 , . . . , n, the index do-
main. \n contains the maximum number of se-
quence elements, n. \i f c o n t i nue is used for con-
trolling loops. The macro \seq with end separator
\qes stores the supplied data in the array.

For typesetting the data structure I used the
macros \ p r t n and \prtw, respectively. These are
not explained here either. Loosely speaking they
typeset the array, \l.. . \ (n) which contains the
items, as you would expect.

Some background. The reader must be aware of the
differences between

the index number, (k)

the counter variable \k, with the value (k) as
index number

the control sequences \ (k) , k = 1 , 2 , . . . , n, with
the items to be sorted as replacement texts.

When we have \def\3(4) \def\4(5} \def\5(6}

then \3 yields 4,

\csname\3\endcsname yields 5, and
\csname\csname\3\endcsname\endcsname

yields 6.

Similarly, when we have \k3 \def\3{name}

\def\name{action) then \ the\k yields 3,

\csname\the\k\endcsname yields name, and
\csname\csname\the\k\endcsname\endcsname

yields acti0n.l To exercise shorthand notation the
last can be denoted by \ va l (\ va l (\ the\k}} .

1. Confusing, but powerful!

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

Another \csname. . . will execute \act ion,
whch can be whatever you provided as replacement
text.

Sorting of Numbers

Sorting of numbers alone is not that hard to do
withm TEX. To design a consistent, orthogonal, well-
parameterized, and nevertheless as simple as pos-
sible set of macros is the challenge, which I claim to
have attained.

Example of use. After \ input heap \ input s o r t

\seq314 1 27\qes\sortn

yields: 1, 27, 314.

Design choices. The backbone of my 'sorting in an
array' is the data structure

with k the role of array index and n the number of
items to be sorted.

This encoding is parameterized by \cmp, the
comparison macro, which differs for numbers,
strings, and in general when more sorting keys have
to be dealt with. The result of the comparison is
stored globally in the counter \ s t a tu s .

Encoding: Input. The elements are assumed to be
stored in the array \ (k) , k = 1,2 , . . . n . The counter
\ n must contain the value (n).

Encoding: Result. The sorted array \l, \2 , . . . , \ (n) ,
with \va l1 5 \va12 5 . . . 5 \val (n) .

Encoding: The macros.

\def \sor tn{ \ le t \cmp\cmpn\sor t \pr tn}

%

\def\cmpn#l#2{%#1, #2 ex-
pand i n t o numbers
%Result: \ s t a tu s= 0 , 1 , 2 i f
% \val {#l} =, >, < \val{#2}.
\i fnum#l=#2\gl obal \ s t a tu s0 \el s e

\ i fnum#l>#2\gl obal \ s t a t u s 1 \ e l s e
\global\s tatus2 \ f i \ f i }

%

\def\sort{\heapsort}.

Encoding : Explanation. \cmpn has to be defined
in compliance with the parameter macro \cmp.
\ s o r t must reference to one of the blue collar sort-
ers. \ p r tn typesets the numbers. That is all.

The above shows the structure of each of the
Ben Lee User sorting macros.

Sorting: \sortn. A (pointer) \def\sortn{ . . . 1 is
introduced whch has as replacement text the setting
of the parameter \cmp, and the invocations of the

actual sorting macro and the macro for typesetting
the sorted sequence.

Comparison operation: \cmpn . The result of
the comparison is stored globally in the counter
\ s t a tu s . The values O , 1 , 2 denote =, >, <, respect-
ively.

Exchange operation: \xch . The values can be ex-
changed via

\def\xch#l#2{%#1, #2 counter var iab les
\ea\let\ea\auxone\csname\the#l\endcsname

\ea\let\ea\auxtwo\csname\the#2\endcsname

\ea\globa1\ea\let\csname\the#2\endcsname

\auxone
\ea\global\ea\let\csname\the#l\endcsname

\auxtwo} .

The macro for typesetting a sequence of numbers in
range notation is provided in the full paper as well
as in the special short paper about typesetting num-
ber sequences, whch has also appeared in NTG's
MAPS93.1.

Lexicographic Sorting

Given the blue collar workers \heapso r t and
\qui cksort , respectively, we have to encode the
comparison macro in compliance with the parameter
macro \cmp. But lexicographc sorting is more com-
plex than number sorting. We lack a general compar-
ison operator for string^,^ and we have to account
for ligatures and diacritical marks.

In creating a comparison macro for words, flex-
ibility must be built in with respect to the ordering
of the alphabet, and the handling of ligatures and
diacritical marks.

Example of use: Sorting ASCII words.

After \ input heap \ input s o r t

\seq a b aa ab bc bb aaa\qes\sortw

yields: a aa aaa ab b bb bc.

Example of use: ij-ligatures.

After \ input heap \ input s o r t

\seq{\i j}st{\i j}d {\i j} {\i j) s in ti k

t \ i j\qes\sortw

yields: in tik tij ij ijs ijstijd.

Example of use: Sorting accented words.

After \ input heap \ input s o r t

\seq b \ ' e b \ ' e \ ' a \ ' a ge\"urm geur aa a
ge{\i j l k t be ge\"\i nd gar\c con\qes

2. It is not part of the language, nor provided in
plain or elsewhere with the generality I needed.

320 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Sorting within TEX

\sortw

yields: a aa a8 be be be garcon geind geur geiirm

geijkt.

Because of the complexity and the many de-

tails involved I restricted myself in this paper to the
simplified cases: one-(ASC1I)letter-words, and ASCII

strings, of undetermined length.

One-(ASCI1)letter-words. The issue is to encode the

comparison macro, in compliance with the para-

meter macro \cmp. Let us call this macro \cmpol w . ~

Its task is to compare one-letter words and store the

result of each comparison globally in the counter

\ s t a tu s . As arguments we have \defs with one let-

ter as replacement text.

\def\cmpolw#l#2{%#1, #2 a re defs

%Result: \ s t a tu s= 0 , 1 , 2 i f

% \val {#l} =, >, < \val{#2}.
\ea\chardef\ea\cone\eaL#l{}%

\ea\chardef\ea\ctwo\ea'#2{}%

\global \ s t a tu s0 \I ge\cone\ctwo}

%

\def\ l ge#l#2{%#1, #2 are 1 e t t e r values

%Result: \ s t a tu s= 0 , 1, 2 i f #1 =, >, < #2

\ifnum#l>#2\global\statusl \ e l s e

\ i fnum#l<#2\global\status2 \ f i \ f i 1

Example of use. After the above

\ s e q z y A B a b d e m n o p z z u v c g
q h j I i 1 k n t u r s f Y \ q e s

\l et\cmp=\cmpol w\sort\prtw

y i e 1 d s : A B I Y a b c d e f g h i j k l m n n o p q r s t

u u v y z z z .

Explanation \cmpolw. In order to circumvent the

abundant use of \expandaftem, I needed a two-
level approach: at the first level the letters are

'dereferenced', and the numerical value of each

replacement text is provided as argument to the

second level macro, \ l ge.4

ASCII words. The next level of complexity is to al-

low for strings, of undetermined length and com-

posed of ASCII letters. Again the issue is to encode

the comparison macro, in compliance with \cmp. Let

us call the macro \cmpaw.j Its task is to compare AS-
CII words and to store the result of each comparison

globally in the counter \ s ta tus .
The problem is how to compare strings letter

by letter. Empty strings are equal. Thls provides a

natural initialization for the \ s t a tu s counter. As ar-

guments we have \defs with words of undetermined

length as replacement text.

\def\cmpaw#l#Z{%#l, #2 are defs

%Result: \ s t a tu s= 0 , 1, 2 i f

% \val{#l} =, >, < \val{#2}.
{\ let\nxt\nxtaw\cmpc#1#2}}

%

\def\cmpc#l#Z{%#l, #2 a re defs

%Result: \ s t a tu s= 0 , 1, 2 i f

% \val {#I} =, >, < \val{#2}.
\global\statusO \conti nuetrue

{\l oop\i fx#l\empty\conti nuefal s e \ f i

\ifx#2\empty\conti nuefal s e \ f i
\ i fcont i nue\nxt#l\nxtt \nxt#2\nxtu

\I ge\nxtt\nxtu

\ifnumO<\status\conti nuefal s e \ f i

\repeat}\i fnumO=\status

\ i f x# l \empty \ i f x#2 \empty \e l s e
\gl obal \s tatus2 \ f i

\el se \ i f x#2 \empty \g loba l \ s ta tus l \ f i

\ f i \ f i }

%

\def\nxtaw#l#2{\def\pop##l##2\pop{\gdef
#l{##2}\chardef#2'##l}\ea\pop#l\pop}

Example of use. After the above

yields: a aa aaa ab b bb bc.

Explanation comparison: \cmpaw. The macro is

parameterized over the macro \nxt. The main part

of \cmpaw has been encoded as \ ~ m p c . ~ (That part

is also used in the general case.)
We have to compare the words letter by let-

ter. The letter comparison is done by the already
available macro \I ge. The \I ge invocation occurs

within a loop, whch terminates when either of the

strings has become empty. I added to stop when the

words considered so far are unequal. At the end the

status counter is corrected if the words considered
are equal and one of the # is not empty: into 1, if #1

is not empty, and into 2, if #2 is not empty.

Explanation head and tail: \nxt. The parameter

macro \nxt has the function to yield from the re-

placement text of its first argument the ASCII value

3. Mnemonics: compare one letter words.

4. Mnemonics: letter greater or equal. A nice ap-

plication of the use of \ea, \chardef, and the con-

version of a character into a number via the quote: '.
Note that the values of the uppercase and lowercase
letters differ (by 32) in ASCII.

5 . Mnemonics: compare ASCII words.

6. Mnemonics: compare character.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

of the first letter and deliver this value as replace-

ment text of the second argument.' The actual

macro \nxtaw pops up the first letter and delivers

its ASCII value - a \chardef - as replacement text
of the second argument.

Sorting Address Labels

Amy Hendrickson used sorting of address labels to

illustrate various macro writing T@niques. However,

she used external sorting routines. Here I will do the

sorting within TEX, and enrich her approach further

by separating the mark-up phase from the data base

query and the report generating phases.
For the imaginative toy addresses of the three

composers: Schonberg, Webern, Strawinsky, I used

the following definitions.

\def\schonberga{\def\i n i t i a1 {A}

\def\sname{Arnold}\def\cname{Sch\"onberg}

\def\street{Kaisersallee}\def\no{lO}
\def\county{}\def\pc{9716HM}

\def\phone{050-

773984}\def\email{asetuw.au}
\def\ci ty {V ienna} \def \count ry{AU}}

%

\def\strawinskyi {\def\ ini t i a l { I}

\def\sname{Igor}\def\cname{Strawinsky}

\def\street{Longwood Ave}\def\no{57}

\def\county{MA)\def\pc{O2146}

\def\phone{617-31427)
\def\emai 1 { i goreai . m i t . edu}

\def \c i ty {Boston} \def \country{USA}}

%

\def\weberna{\def\i n i t i a1 {A]
\def\sname{Anton}\def\cname{Webern}

\def\street{Amstel}\def\no{l43}
\def\county{Noord-

Holl and}\def\pc{9893PB}

\def\phone{020-

225143}\def\emai 1 {awhva. nl }

\def\c i ty{Amsterdam}\def\country{NL}}

%

%the l i s t w i t h ac t ive l i s t separa tor \as

%to be defined by the user

\def\addressl i st{\as\strawi nskyi

\as\weberna\as\schonberga)

For the typesetting, I made use of the following
simple address label format

\def\tsa{%The current address i n fo i s s e t

\par\i n i t i a1 s \cname \par

\no\ \ s t r e e t \ \ci ty\par

\PC\ \county\ \country\par}
%

\def\i n i t i a l s { \ e a \ f i f o \ i n i t i a l \ o f i f }

\def\f i fo#l{\i fx \of i f# l \o f i f \ f i # l . \ f i fo}

\def\ofi f # l \ f i fo{\f i}

Example: Selection of addresses per country. Sup-

pose we want to select (and just \ t s a them for sim-

plicity) the inhabitants from Holland from our list.

This goes as follows.

with result

A. Webern

143 Arnstel Amsterdam
9 8 9 3 ~ ~ Noord-Holland NL

Example: Sorting address labels.

Amy's example can be done completely within TEX,

as follows.

%Prepare so r t ing
\def\as#l{\advance\kl \ea\xdef\csnarne

\ the\k\endcsname{\ea\gobble\str ing#l}}

%

\def\gobbl e#l{}

%

\kO{}\addressl i st%Create array

%to be sorted

\n\k\def\prtw{}%Suppress defau l t \prtw

\sortw %Sort t he l i s t
Oflypeset addresses, a1 phabeti c-

a1 1 y ordered

\kO
\ loop\ifnum\k<\n\advance\kl

\csname\csname\the\k\endcsname\endcsname

\vski p lex\ t sa

\ repeat

with result

A. Schonberg

10 Kaisersallee Vienna
9716HM AU

I. Strawinsky
5 7 Longwood Ave Boston

02146 MA USA

A. Webern

143 Amstel Amsterdam
9893PB Noord-Holland NL

7. Splitting up into 'head and tail' is treated in

the T~Xbook, Appendix D.2, p.378, the macro \lop.

There, use has been made of token variables instead

of \defs.

322 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Sorting within TEX

Sorting Knuth's Index Reminders

An index reminder, as introduced by Knuth, consists
of index material to be further processed for type-
setting an index. In the T~Xbook, p. 424, Knuth gives
the syntax of an index reminder

(w o r d) U! (d i g i t) page n u m b e r) .

The reminders, one per line, are written to a file be-
cause only the OTR knows the page numbers. Knuth
considered t h s file, i ndex . tex,

'. . . a good first approximation to an index.'

He also mentions the work of Winograd and paxton8
for automatic preparation of an index. Here we will
provide a second approximation to an index: the
index reminders are sorted and compressed. The
sorting is done on the three keys

primary key: (w o r d)

secondary key: (d i g i t) , and
tertiary key: (p a g e n u m b e r)

The compressing comes down to reducing the index
reminders with the same (w o r d) (d i g i t) part to one,
with instead of one page number all the relevant
page numbers in non-decreasing order.

Example: Sorting on primary, secondary and ter-
tiary keys.

us call t h s macro \cmpi r.1° Eachvalue is composed
of: a word (action: word comparison), a digit (ac-
tion: number comparison), and a page number (ac-
tion: (page) number comparison).

Then we have to account for the reduction of
'duplicate' index entries, and finally the typesetting
has to be done.

The comparison. I needed a two-level approach.
The values are decomposed into their components
by providing them as arguments to \decom.ll The
macro picks up the components
-the primary keys, the (w o r d) ,

-the secondary keys, the (d i g i t) , and
-the tertiary keys, the (p a g e n u m b e r) .

It compares the two primary keys, and if necessary
the two secondary and the two tertiary keys success-
ively. The word comparison is done via the already
available macro \cmpaw.

To let t h s work with \ so r t , we have to \ l e t -

equal the \cmp parameter to \cmpi r.

The comparison macro.

\def\cmpi r # l #2 {%# l , #2 de f s

%Result : \ s ta tus= 0, 1, 2 i f

% \ va l { # l } =, >, < \val(#2}

\ea\ea\ea\decom\ea#l\ea;#2.}

%

\def\decom#l !#2 #3;#4 ! # 5 #6.{%

\def\one{#l} \def\ four{#4}\cmpaw\one\four

\ifnumO=\status%Compare second key

! 2 2l \def\g{aa ! 1 21 \ifnum#2<#5\global\status2 \e l se

\i fnum#2>#5\gl obal \ s t a t u s 1 \ e l se

%Compare t h i r d key
sepw\\ \nul l \i fnum#3<#6\gl obal \ s ta tus2

ndent \ e l se \ i fnum#3>#6\gl obal \ s t a t u s 1 \ f i
a f t e r s o r t i n g \ \ [. 5ex]\prtw}

\ h f i l \ v t o p { \ h s i ze2.5cm\noi ndent

a f t e r r educ t i on \ \ [. 5ex]\redrng\prtw}

\ h f i 1 \ v top{ \hs i ze2cm\noi ndent

t ypese t i n \ \ i ndex: \\[. 5ex] \ p r t i nd. } \ h f i 1

The above yieldsg
after sorting: after reduction: typeset in

a ! l 1 a !1 1-3 index:

a ! l 2 a !2 2 a 1-3
a ! 1 3 aa !l 1, 2 \a 2

a!2 2 ab !1 1 aa 1, 2
aa !1 1 b !O 1 ab 1
aa !1 2 z !3 1 b 1

ab !l 1 (z) 1.
b !O 1
~ ! 3 1

Design. Given the sorting macros we have to encode
the special comparison macro in compliance with
\cmpw: compare two 'values' specified by \defs. Let

\f i

\ f i

\ f i

\fi 1

Reducing duplicate word-digit entries. The idea is
that the same index entries, except for their page

8. Later Lamport provided makeindex and Sa-
lomon a plain version of it, to name but two persons
who contributed to the development. The Winograd
Paxton Lisp program is also avadable in Pascal.
9. The unsorted input can be read from the ver-

batim listing.
10. Mnemonics: compare index reminders.
11. Mnemonics: decompose. In each comparison
the defs are 'dereferenced', that is, their replacement
texts are passed over. T h s is a standard T~Xnique:
a triad of \eas, and the hop-over to the second
argument.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

numbers, are compressed into one, thereby redu-
cing the number of elements in the array. Instead
of one page number all the relevant page numbers

are supplied in non-descending order in the remain-
ing reminder, in range notation. The macro is called

\redrng12 and is given below.

\def\redrng{%Reduction of \ l , . . . , \n , w i t h

%page numbers i n range representat ion

{\kl\kkO

\ea'\let\ea\record\csname\the\k\endcsname

\ea\spl i twn\record. \l et\refer\word

\ l et\nrs\empty\prcrng\num
\ l oop\i fnum\k<\n\advance\kl

\ea\let\ea\record\csname\the\k\endcsname

\ea\spl i twn\record .%

\ifx\refer\word%extend \nrs with number

\prcrng\num
\else%write record t o \ k k

\advance\kkl \ s t r n r s \ea\xdef

\csname\the\kk\endcsname{\refer{} \nrs}

\l et\nrs\empty\i ni t\num\prcrng\num

\ l et\refer\word
\ f i

\ repeat\ i fnuml<\n\advance\kkl \ s t rn r s \ ea

\xdef\csname\the\kk\endcsname{\word{}

\nrs}\gl obal \n\kk\fi}}
%auxi 1 i a r i e s

\def\spl i twn#l !#2 #3.{\def\word{#l !#2}%
\def\num{#3)}

%

\ de f \ p r c rng# l { \ i n i t { # l } \ de f \ p r c rng## l {%

\ifnum##l=\l s t \ e l se\ i fnum##l=\sl s t

\I s t \ s l st\advance\sl s t 1 \ e l s e
\ s t r n r s \ i n i t{##l}\f i \ f i}}

%

\def\s trnrs{\di f \ l st\advance\di f - \ f r s t

\edef\nrs{\i fx\nrs\empty\el se\nrs\sepn\f i
\ the\f r s t \ i fnumO<\di f

\ i fnuml=\di f\sepn\the\l s t
\e lse\nobreak-- \nobreak\ the\ ls t

\ f i

\ f i 11
Explanation: reduction of entries. The encoding is

complicated because whle looping over the index
reminders either the reminder in total or just the

page number has to be handled. The handling of
the page numbers is done with modified versions

of \prc, \ p r t f 1, called respectively \prcrng and

\strnrs.13 I encoded to keep track of the numbers
in the macro \nrs , in the case of duplicate word-

digit-entries. Another approach is whle typesetting

the array element to process the page numbers via

\prc.

Typesetting index entries. Knuth has adopted the

following conventions for coding index entries.

The typesetting as such can be done via the following

macro.

Mark up

A{. . . }

{ . . . }
A l . . . I

" I \ . . . I
I . . . I

\def\typi nd#l{%#l a def

\ea\spl i t t o t # l . %

\i fcase\di gi t\word\or
{\tt\word}\or

{\tt\char92\word}\or

$\l angl e\hbox{\word}\rangl e$ \ f i { }

\pagenrsI
%

\ d e f \ s p l i t t o t # l !#2 #3.{\def\word{#l}%

\chardef\digi t#2{}\def\pagenrs{#3}}

%

\ de f \ p r t i nd { { \ de f \ \ { \ h f i l \ b reak } \ k \ k ze ro

\def \sep{\ let \sep\sepw}%

\ loop\ifnum\k<\n\advance\kl \sep
\ea\typind\csname\the\k\endcsname

\repeat}}

The typesetting of the index a la T~Xbook Appendix I

has been dealt with in the Grandmaster chapter of

the T~Xbook, p.261-263.

* I . . . I denotes manmac's, TUGboat's,. . .verbatim.

Typeset in copy*

. . .
'silent'

I . . . I
] \ . . . I

Epilogue

Ln i ndex . t ex

. . .u!Ou(pageno)

. . . u!Ou(pageno)

. . . U! U p a g e no)

. . . u! 2u(pageno)

No robustness was sought. The encodings have been
kept as simple and flexible as possible. As a con-

sequence no attention has been paid to safeguarding

goodies like the prevention of name confusions with

those already in use by an author.

Silent redefinitions do occur when not alert. Be-
ware!

(...) / . . . U! 3u(page no)

Bibliography

Laan, C.G van der. "Sorting in BLUe.". MAPS93.1,
149 - 169, 1993.

12. Mnemonics: reduce (in range notation).

13. Mnemonics: process with ranges, respectively

store numbers.

324 TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Sorting wlthn TEX

Appendix Heap Sort

The process consists of two main steps: creation of a heap, and sorting the heap. A sift operation is used in
both.

In comparison with my earlier release of the code in MAPS92.2, I adapted the notation with respect to
sorting in non-decreasing order.14

What is a heap? A sequence a] , a2,. . . ,a,, is a heap if ak 2 a2k A ak r a ~ + l , k = 1,2, . . . , n t 2 , and
because a,+] is undefined, the notation is simplified by d e h g ak > a,+], k = 1,2 , . . . , n .

For example, a tree and one of its heap representations of 2,6,7,1,3,4 read

The algorithm. In a pseudo notation the algorithm, for sorting the array a[l:nl, reads
%heap creation
1 : = n d i v 2 + 1;

while1 # l d o l : = 1 - l ; s i f t (a , l , n) o d

%sorting
r := n;

whiler # 1 d o (a [l] , a [r]) := (a[r] ,a[l])%exchange

r : = r - l ; s i f t (a , l , r j o d

%sift #1 through #2

j := #1

while2j 2 #2 A (a [j] < a [2 j] v a [j] < a [2 j + l]) d o

m i : = 2 j + i f a [Z j] > a [2 j + l] t h e n O e l s e l f i

exchange(a[j] , a [m i] j j := m i od

Encoding: Purpose. Sorting values given in an array.

Encoding: Input. The values are stored in the control sequences \ l , . . . , \(n). The counter \n must
contain the value (n) . The parameter for comparison, \cmp, must be \l et-equal to \cmpn, for numerical
comparison, to \cmpw, for word comparison, to \cmpaw, for word comparison obeying the ASCII ordering, or
to a comparison macro of your own. (The latter macro variants, and in general the common definitions for
\heapsort , and \qu icksor t , are supplied in the file s o r t . tex , see van der Laan (1993).)

Encoding: Output. The sorted array \l, \2, . . . \(n), with \ v a l l I \va12 5 . . . 5 \ va l (n) .

Encoding: Source.

%heapsor t . tex Jan, 93

\newcount\n\newcount\lc\newcount\r\newcount\ic\newcount\uone

\newcount \ jc \newcount \ j j \newcount \ j jone \newi f\ i fgoon

%Non-descendi ng s o r t i n g

\def \heapsor t {%data i n \1 t o \n

\ r \n\heap\ i c l

{\l oop\i fnuml< \ r \xch\ i c \ r \advance\r-1 \ s i f t \ i c \ r \ repea t } }

%

\def\heap{%Transform \ l . . \ n i n t o heap

\I c\n\d i v i de\ l c2{}\advance\l c l

{\l oop\ i f numl<\l c\advance\l c - 1 \ s i ft\ l c\n\repeat}}

%

\ de f \ s i f t # l #2 {%#1 , #2 counter v a r i a b l e s

l 4 It is true that the reverse of the comparison operation would do, but it seemed
to adapt the notation of the heap concept with the smallest elements at the bottom.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

more consistent to me

Kees van der Laan

\jj#l\uone#2\advance\uonel \goontrue

{\ loop\ j c\ j j \advance\ j j \ j j
\i fnum\j j<\uone \ j jone\ j j \advance\ j j o n e l

\ i fnum\ j j<#2 \cmpval \ j j \ j jone

\ifnum2=\status\j j \ j jone\f i

\f i \cmpval \ j c \ j j\i fnum2>\status\goonfal s e \ f i

\e l se\goonfal se

\f i

\ i f goon \ xch \ j c \ j j \ r epea t } }

%

\def\cmpval#l#2{%#1, #2 counter var iab les

%Result: \status= 0, 1, 2 i f

%values pointed by

% #1 =, >, < #2

\ea\let\ea\aone\csname\the#l\endcsname

\ea\let\ea\atwo\csname\the#2\endcsname

\cmp\aone\atwo}

\endi nput %cg l@r i s c l . rug. n l

Explanation: \heapsort. The values given in \l, . . . \{n), are sorted in non-descending order.

Explanation: \heap. The values given in \1, . . . , \ (n) , are rearranged into a heap.

Explanation: \ s i f t . The first element denoted by the first (counter) argument has dsturbed the heap. Sift
rearranges the part of the array denoted by its two arguments, such that the heap property holds again.

Explanation: \cmpval. The values denoted by the counter values, supplied as arguments, are compared.

Examples o f use: Numbers, words. After \ i npu t heap \ input s o r t

\def\l{314}\def\2{l}\def\3{27}\n3 \let\cmp\cmpn\heapsort

\begi n{quote}\prtn, \end{quote}

%

\def\l{ab}\def\2{c}\def\3{aa}\n3 \let\cmp\crnpaw\heapsort

\begin{quote}\prtw,\end{quote}

and

\def\l{j\ij}\def\2{ge\"urm}\def\3{gar\c con}\def\4{\'el\'eve}\n4

\l et\cmp\cmpw {\accdef\heapsortl

\begi n{quote}\prtw\end{quote}

yieldslj

1, 27, 314,

and

eleve garqon geiirm jij.

\accdef suitably redefines the accents withn this scope.

326 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Sorting withn TEX

Appendix: Quick Sort

The quick sort algorithm has been discussed in many places. Here the following code due to Bentley has
been transliterated.16

procedure QSor t (L, U)
i f L<U then Swap(X[l], X[RandInt(L,U)]) T:=X[L] M:=L

f o r I : = L + l t o U do i f X[I]<T M:=M+l Swap(X[M] , X[I]) f i od

Swap(XCL1, X[MI 1
QSort(L, M-1) QSort(M+l, U)

f i

Encoding: Purpose. Sorting of the values given in the array \ (low) , . . . , \ (up) .

Encoding: Input. The values are stored in \ (low) , . . . , \ (up) , with 1 I l o w up 5 n. The parameter for

comparison, \cmp, must be \l et-equal to \cmpn, for number comparison, to \cmpw, for word comparison,
to \cmpaw, for word comparison obeying the ASCII ordering, or to a comparison macro of your own. (The
latter macros, and in general the common definitions for \heapso r t , and \qu i cksor t , are supplied in the
file s o r t . t e x , see van der Laan (1993).)

Encoding: Output. The sorted array \ (l ow) , . . . \ (up) , with \ va l (l ow) 5 . . . 5 \ va l (up) .

Encoding: Source.

%quick. t e x I a n 93

\newcount\low\newcount\up\newcount\m

\def \qu i cksort{OA/al ues g iven i n \ low, . . . ,\up a re so r t ed , non-descendi ng .
%Parameters : \cmp, comparison.

\i fnum\l ow<\up\el se \b r k \ f i

% \ re f va l , a re fe rence va lue se lec ted a t random.

\m\up\advance\m-\l ow%i ze -1 o f a r r ay p a r t

\i fnumlO<\m\rnd\mul ti p l y\m\rndval

\divide\m99 \advance\m\low \xch\low\m

\ f i

\ea\let\ea\refva1\csname\the\low\endcsname

\ m \ l ow\k\l ow\l e t \ r e f v a l cop \ re fva l

{\l oop\i fnum\k<\up\advance\kl

\ea\let\ea\oneqs\csname\the\k\endcsname

\cmp\refval\oneqs\ifnuml=\status\global\advance\ml \xch\m\k\f i

\l e t \ r e f v a l \ r e f v a l cop

\ repeat} \xch\ l ow\m

{\up\m\advance\up-1 \qu i c k s o r t } { \ l ow\m\advance\l o w l \qu i c kso r t } \ k r b }

%

\ de f \ b r k# l \ k rb { \ f i } \ de f \ k rb { \ r e l ax }

\endi nput %cg l@r i s c l . rug. n l

Explanation. At each level the array is partitioned into two parts. After partitioning the left part contains
values less than the reference value and the right part contains values greater than or equal to the reference
value. Each part is again partitioned via a recursive call of the macro. The array is sorted when all parts are
partitioned.

In the TEX encoding the reference value as estimate for the mean value is determined via a random
selection of one of the elements. The random number is mapped into the range [l o w : u p] , via the linear
transformation \ low + (\up - \ low) c \ rndval l99.l'

The termination of the recursion is encoded in a TEX peculiar way. First, I encoded the infinite loop.
Then I inserted the condition for termination with the \f i on the same line, and not enclosing the main part
of the macro. On termination the invocation \b rk gobbles up all the tokens at that level up to its separator
\krb, and inserts its replacement text - a new \f i -to compensate for the gobbled \f i .

l6 L, U have been changed in the TEX code into low, up.
Note that the number is guaranteed within the range.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

Examples: Numbers, words. After \ i n p u t qu i ck \ i n p u t s o r t

\def\l{314}\def\2{l}\def\3{27}\n3 \ lowl\up\n\let\cmp\cmpn

\ qu i ckso r t

\begi n {quo te } \p r tn , \end{quote}

%

\def\l{ab}\def\2{c}\def\3{aa}\def\4{\i j } \ d e f \ 5 { i k} \def\6{z}\def\7{a}\n7

\l owl\up\n\l et\cmp\cmpw \qu i ckso r t

\begin{quote}\prtw,\end{quote}

and

\def\l{j\ij}\def\2{ge\"urm}\def\3{gar\c con}\def\4{\'el\'eve}\n4
\l owl\up\n\l et\crnp\cmpw {\accdef\qui c kso r t)

\begin{quote}\prtw.\end{quote}

ylelds18

1, 27, 314,

a aa ab c i k i j z,

and

eleve garcon geurm jij.

l8 \accde f suitably redefines the accents hithin this scope.

328 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

