
Concurrent Use of an Interactive TEX Previewer

with an Emacs-type Editor

Minato Kawaguti and Norio Kitajima
Fukui University, Department of Information Science, 9-1, Bunkyo-3, Fukui, 910 Japan

kawaguti@ilmpsl.fuis.fukui-u.ac. j p

Abstract

A new efficient method was developed for editing (LA)TEX source files. It uses the

combination of an Emacs-type editor and a special version of xdvi . Source files

may be edited whle browsing through the dv i preview screen simultaneously on

the X window screen. Whenever a position is selected by cliclung the mouse on

a page of the document on display on the screen, the corresponding location of

the particular (LA)TEX source file is shown in the editor's buffer window, ready for

inspection or for alteration. One may also compile and preview (and obviously

edit as well) any part of the entire document, typically one of its constituent files,

for efficiency's sake. Fundamental characteristics of the document, shaped by

the specification of the document style and various defimtions found mostly at

its root file, are retained even under partial compilation.

The Editor for TEX

Since it is not easy to grasp what a document

looks like by simply reading the TEX source files,

the efficiency of editing a TEX document file can

be enhanced significantly if we can edit the TEX file

in close coordination with the viewing capability of

the corresponding TEX dv i file linked dynamically

to the editor.

There can be two approaches for the realization

of this scheme. The first method leads to developing

a special editor which is capable of displaying a TEX-

processed result. The second method respects

the user's preference for a general-purpose editor,

opting for its enhancement with the efficient viewing

capability of the TEX dv i files in the X window screen.

The advantage of the former is that the designer

of the editor has ample freedom to bring in the

novel features desirable both for presenting the dv i

view on the screen and for editing the TEX source
being worked on. The VORTEX project by M. A.

Harrison's group is a notable example adopting the

first approach.

On the other hand, it may be equally advanta-

geous for many people if they could use an editor

with whch they are familiar, provided it is equipped

with an interactive dv i viewing feature. Ths paper

describes a simple scheme of the second category

targeted to those people who prefer Emacs or one

of its derivatives as their sole editor for everything,

including TEX sources.

This scheme of synchronizing an editor of the

finest breed, of Emacs-type to be specific, with

an acclaimed previewer will help improve, among

others, editing sessions for large TEX documents.

A typical document written in TEX, say a book
manuscript, may consist of many files. These

may form a tree structure through a multi-layered

\ inpu t hierarchy, based on the logical divisions.

With the traditional ehting style using the

Emacs editor, particularly when the document con-

sists of many files forming complex \ inpu t layers,

a laborious cut-and-try search to single out a file

from many is almost inevitable before locating the

given passage. In any event, the cursor in the editing

buffer window would have to be moved to all these

places more or less manually.

In contrast, our scheme eliminates most of

these time-consuming chores, and a single mouse

click is all that is needed.

Outline of the Operation

In short, the editor/previewer combination does the

following:

a. Any TEX source file or a chained cluster of them,

be it the root, a node, or a leaf of the \ inpu t

tree, can be previewed without compiling the

entire TEX tree.

b. The number of generations of \i nput files to be

included in a partial compilation for previewing

can be limited to a user-specified depth, both in

the direction of descendants and of ancestors.

TUGboar, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting 293

M. Kawaguti and N. Kitajima

In so doing, the fundamental characteristics

of the document will still be preserved and

reflected on the pages shown on the screen,

even if its root file could have been curtailed.

c. Selection of the compiler, TEX, LATEX or LATEXZ~

 LATEX^), is automatic.

d. The cursor of the Emacs-type editor jumps to

the line of the TEX source file corresponding to

the location specified by clicking the mouse on

the display screen of the previewer.

e. The editor accepts interactive commands from

the user while the previewer is active on the

display. That is, both of them coexist, and

there is no need to terminate the previewer to

regain control over the editor.

Combination of Two Tools

A straightforward way to achieve this scheme is

to select an editor and a previewer from among

the tools most frequently used. The combination

of the Emacs editor (or a close cousin) and xdvi

would surely be acceptable to the majority of users,

particularly those in the academic and scientific

communities where we find a heavy concentration

of devoted TEX users.

The present paper is based on our experience in

implementing t h s scheme for two lunds of Emacs-

type e l tors : the original Emacs editor, GNU Emacs,

and one of its derivatives, N jove.

The latter, having been the subject of develop-

ment for some years at Fukui University, is based on

Jonathan Payne's JOVE (Jonathan's Own Version of

Emacs). Amongst its many unique editing features

not found in the original JOVE or in Emacs, N jove's

T& mode is an attractive asset for editing (LA)TEX

files. Like IOVE, Njove is written entirely in the C

language.

Except for the ways the new editing commands

are added to the main body of the respective editors,

the two version are almost identical. For GNU Emacs

this portion is written in Emacs lisp.

Njove has been the primary testbed for new

ideas in t h s project because of the present authors'

famdiarity with its internal details. As such the

Njove version is, at the time of t l s writing, in a

slightly more advanced phase of development. Some

of the minor implementation details (such as the

c o h g method of inter-process communications) to

be described in what follows may reflect, therefore,

those of the N jove version. Nevertheless it is hoped

that the word Njove can be read as indicating

a generic Emacs-type editor, including GNU Emacs

itself.

To ease portability, a substantial part of the

program consists of modules that can be run as

parallel Unix processes, isolated from the editor

itself.

The Previewer

Njove permits previewing the whole or part of the

file being edited using a modified version of the

standard xdvi. (To distinguish it from the original

version, the modified version will henceforth be

referred to as xdvi+.) Njove's text buffer window

and the xdvi+ TEX viewing window are shown side

by side on the screen.

When xdvi + is activated, it displays the image

of the specified dvi file on the X window screen.

xdvi + scans the dvi file sequentially, and places

each character glyph or rule on a page one by one,

just as any dvi device driver does. Simultaneously

with drawing each page, however, xdvi + keeps track

of the locations it encounters by using \special

commands that have all a valid argument string

(parsing message) with the following format:

1 oc source-file-name source-line-number

A correspondence table is created anew for each

update of the displayed page. The table records the

correspondence between this locational information

(the x- and y-coordinates) of the document page and

that for the source file, namely the source file

name and the line number. The table can accept

a generous amount of \special commands (by

default, up to 4096 entries per page).

Each time xdvi+ detects a mouse event for the

page and identifies it as the newly implemented

xdvi instruction to locate the source file, xdvi+

searches for the closest tagged location upstream

in the document from the point the mouse click

occurred. The source file name and the line number

are identified by consulting the correspondence

table for that tag entry.

Upon notification by xdvi+ about this infor-

mation, Njove switches the &splayed content of

the editing buffer promptly to that of the (possibly

newly opened) target file, and moves its cursor (that

is, "point" in Emacs jargon) to the beginning of the

line which is most likely to contain the passage the

user specified with the mouse on the TEX preview

screen. Incidentally, the buffer is ready to accept

any editing command all the time.

The coordmation between N jove (or its "agent",

t ex j ump, to be more rigorous, as will be discussed

in a moment) and xdvi + can be outlined as follows:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Concurrent Use of Reviewer with Editor

1. Establish a llnk between N jove and xdvi +, so

that they can communicate with each other in

real-time in a typical X-window environment.

2. Let xdvi+ pick up the positional information

where the mouse click event took place.

3. Interpret the click position and notify N j ove of:

a. the source file name, and

b. the source line number.

4. Let N j ove "find the specified file, and position

the cursor at the beginning of the designated

line.

A New Editor Command

To integrate the interactive previewing capability

of TEX'S dv i file into the editor, a new command

tex-jump was added to Njove.

When the N j ove command

Esc-x tex- j ump [option switches] [target-file]

is issued, Njove spawns a separate Unix process

t ex jump, independently of the editor. (The presence

or absence of the hyphen in the name texjump is

used to differentiate between these two closely

related but clearly distinct entities.) If the file name

is not specified, the file associated with the buffer of

the window, from which the command was issued,

is selected as the default target-file (to be described

later). Optional switches may also be specified.

These are identical to the ones for texjump as a

by xdvi+ ("point positioning"). At the same time,

the successive parsing message line is appended to

a special buffer "texjump".

Positioning on the Screen

Whenever the left button of the mouse is clicked

while holding down the control key of the keyboard

at the same time, xdvi + determines the correspond-

ing current location in the source file, and transmits

it to texjump. Njove, receiving this information

from texjump through pty, selects the relevant

buffer and advances the point to the beginning of

the requested line.

Users user can pick any location at any time

asynchronously until they quit xdvi+ with the q

command.

When the command tex- j ump is issued, N j ove

switches to the active state of "error parsing". Then

Njove is ready to accept parsing commands from

the keyboard. They are next-error (C-x C-n) and

previous-error (C-x C-p), respectively, which step

the point in the buffer texjump either one parsing

message line downward or upward, followed by a
new point positioning. (In the case of GNU Emacs,

next-error iskey-bound to C-x ',while previous-

e r r o r is missing.) This active status persists even

after xdvi + is terminated through its quit command.

Issuing C-x C-c finally lets N j ove exit from its error

parsing status.

shell-executable command.

The standard 1/0 of texjump is connected to
The Tree Structure of TEX Source Files

Njove via a pair of ptys, and its output stream is

eventually sent to and stored in the newly created

N j ove buffer named "texjump".

t ex j ump in turn spawns xdvi +. They commu-

nicate with each other through a Unix pipe. For each

mouse click in the preview screen, xdvi + sends back

to t e x j ump the locational information of the source

file through the Unix pipe. texjump thereupon

outputs a grep-like message (parsing message line)

to the standard error stream, which Njove accepts

through its pty.

Until t e x j ump is eventually terminated, N j ove

intercepts all the input streams to its various

buffers scrutinizing a stream destined to the buffer

texjump. If a parsing message for t ex j ump is found,

N j ove subsequently lets its newly added function

ParseErrorOneLine() parse that single line, and

displays the pertinent buffer (or opens a new file if it

is not yet assigned to any of the existing buffers) in

an appropriate working window, and lets its cursor

(point) move to the beginning of the line specified

A typical TEX document may be composed of mul-

tiple TEX source files forming a tree structure by

means of the \ input feature. Let its root file be

root. tex.

A new tool, text ree, analyzes the tree struc-

ture of the document by tracing recursively the

existence of \ input or \ inc lude commands. tex-

t r e e expects a single argument in the command

line, the root of the document tree.

% tex t ree root. t ex

tex t ree generates a file, Tex-Input-Tree by

default, which indicates the mutual input depen-

dency relationship of the document in a format

akm to what the Unix make command under-

stands. Therefore, as a byproduct, the created

file, Tex-Input-Tree, may also be used to write the

dependency rule of a Makefile for all sorts of (LAITEX

compilation in general.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

M. Kawaguti and N. Kitajima

Derivation of the Source Position from

the DVI File

Since the TEX compiler does not leave any trace of

the locational information about the original TEX

source files in the dvi file, ordmary dvi device

drivers have no way of correlating an arbitrarily

chosen point on a processed page of the document

with the specific file among a number of TEX source

files forming that document, and the wordlline

position within that file in particular.

Therefore some means of forwarding the loca-

tional mformation to the device driver has to be

incorporated. There are two alternatives:

The most straightforward scheme would be to

modify the (LA)TEX compilers such that they either

include the locational information of the source

files within the dvi file they generate, or

generate an additional auxiliary file which con-

tains the mformation about the location in the

document pages of the items found at the

beginning of all the source lines.

One could envisage introducing a parallel to the

optional switch -g found in the C compiler, used to

add extra lnformation for source level debugging.

While there is no doubt as to the technical feasibility

of this scheme, and obviously it is the most rational

and robust of the two alternatives, in real life the

modification had better be incorporated into the

official circulating version of all the compilers by

their original authors, lest the introduction of yet

other variants go astray from the spirit of unification

of (E)TEX.

Although we would very much like to have this

feature in future releases of the (LA)TEX compilers,

we wd1 look for another alternative that offers

a practical solution for the time being. This

approach uses the (E)TEX compilers as-is, without

any modification. It generates copies of the source

files, and additional information (a "positional tag")

is inserted into these files automatically prior to the

(E)TEX compilation. The positional tag is inserted

at every "landmark location" of the source files,

say at every location where a new paragraph begins

("paragraph mode"). Or it could as well be at

the beginning of each non-empty source line ("line

mode").

The applicable positional tags must never dis-

tort the original content of the document. Two

TEX commands, \wl og and \special, satisfy this

criterion.

One can insert a \speci a1 command with its

message text consisting of:

a unique ID code (default: loc) to distinguish

t h s particular usage of the \speci a1 command

from others;

the source file name;

the source line number.

Thls is the scheme adopted in tex j ump.

By comparison, one could insert a \wl og com-

mand, instead of \special, as the positional tag.

The preprocessor (that is, the equivalent of tex j ump)

would then generate the message text for \wl og as

an ASCII string indicating the location as the line

number of the source file at the point it inserts the

\wl og command. With the help of a simple program

that would analyze the log file written by the the

(E)TEX compiler, the page boundaries of the printed

document could be identified in the source files.

The advantage, if any, of using \wl og would be

that neither the (LAITEX compilers nor the previewer

need to be altered, offering the user a much wider
selection of previewers. This benefit would, how-

ever, be offset in most cases by the drawbacks, in
comparison with using \speci a1 :

The editor can control the previewer page, but

not vice versa, because the unmodified version

of the previewer cannot communicate back to

the editor.
The positioning resolution one can expect can-

not go beyond the page of the document

displayed on the previewer screen.

Line Mode versus Paragraph Mode

texjump accepts two options to select the way

\s peci a1 commands are inserted, namely line

mode and paragraph mode. When line mode is

chosen, a mouse click in the previewer window can
locate the source position within the range of a line

or so. In paragraph mode, however, we deal with

a scope no finer than the size of the paragraphs

involved. The main motivation for paragraph mode

comes from the need to make tex j ump much more

robust if line mode fails for reasons discussed

below.

Line mode. In t h s mode \special is inserted

at the beginning of each non-empty line without

otherwise altering the original context of each line.

Since the original line number assigned to each line

remains vahd after the insertion, the dvi driver

can identify the correct line number in the original

source files, even though it extracts the data from a

single file, namely the dvi file created by comphg

the modified copy files containing the scattered

\speci a1 commands.

296 TUGboat, Volume 15 (1994), No. 3 - Proceedmgs of the 1994 Annual Meeting

Concurrent Use of Previewer with Editor

Paragraph mode. In this mode \speci a1 is inserted

exclusively at the beginning of the first line of each

"paragraph. t ex j ump recognizes a cluster of one or

more empty lines as the paragraph delimiter. (Note

that the definition of a paragraph is different from

that of TEX or Emacs.)

Problems Associated with Tag Insertion

Even though a \special command supposedly

causes no appreciable side effect other than merely

forwarhng a character string to the dvi driver as a

communicative message, it does not mean we can

insert it indiscriminately in any arbitrary position

of the given source file.

As a typical example, consider the case of a TEX

macro whlch expects one or more arguments, and

there occurs a line break in the source file just in

front of one of its arguments. One cannot insert the

\speci a1 blindly at the beginning of the following

line which starts with the expected argument.

For instance, within a \ha1 i gn construct, the

line with \noal ign rejects \special . If the con-

struct's final line begins with its outermost closing

brace (11, \speci a1 is not permitted.

A more obvious example is LATEX'S verbatim

environment, or its TEX equivalent. Insertion of a

\speci a1 in the lines belonging to t h s environment

does alter the content of the compiled document

because there \speci a1 is nothing more than a plain

character string. Needless to say, xdvi+ does not

identify the "argument" as positional information.

Therefore texjump has to know about lines

where \speci a1 insertion should be avoided. This

means that t e x j ump must be able to, ideally speak-

ing, analyze the syntactical structures.

Realization of a full scope syntax analysis

would be equivalent to almost fabricating a new

(LA)TEX compiler. This kind of duplicated effort

would not be justifiable, because the modification

of the compilers mentioned before is clearly the

rational way to do it. The current version of t ex j ump

analyzes, therefore, the syntactical structure of the

source fdes only superficially.

If the (LA)TEX compiler complains about a syn-

tactic error that originated from the insertion of

the \ spec ia l , the user may either switch to para-

graph mode, which is more robust than line mode,

or modify slightly the original source file, as will

be discussed below, by adding some directives to

texjump in the form of comment lines for the TEX

compiler.

Where to Attach the Positional Tags

Since (LA)TEX refuses to accept the insertion of a posi-

tional tag at certain places, we have to discern these

syntactically inappropriate circumstances. The cur-

rent version of texjump interprets the syntactical

structure superficially. Therefore it recognizes only

the most obvious cases.

Tags are not attached to the beginning of the

following lines:

1. a blank line, or a comment line;

2. within a verbatim environment;
3. from the line beginning with \def till the

following blank line;

4. a line which begins with), \noal i gn, \omit,

\mu1 t i span;

5 . the line following a non-blank line ending with

%;

6. the preamble and postamble part of each file,

if any;

7. lines for which explicit instructions tell t ex j ump

not to attach a tag;

8. each non-first line of each paragraph when in

paragraph mode.

Otherwise the positional tag is attached to the very

beginning of each line.

Manual Control of the Tag Insertion

t e x j ump's algorithm for inserting positional tags

works reasonably well for relatively simple TEX

documents. For documents of a complex nature,

however, one can only expect it to be marginally

smart.

When t e x jump stumbles into a pitfall, partic-

ularly in line mode, some texjump directives can

rescue it. Inserted manually in the source file by the

user, they let t ex j ump avoid potential hazardous

spots in the file.

Each directive is a TEX comment line with a

predefined format. It consists of a line beginning

with three % characters followed by a symbol.

%%%< Enter paragraph mode.
o o o A Exitparagraphmode.

0 0 0 A ! Skip tagging the ensuing single line.

%%%- Skip tagging until the next blank line.

File Inclusion

texjump lets the user specify the range of fdes to

be included through three parameters:

1. the filename under consideration (target-file);

2. the number of generations, in the \ input tree,

corresponding to:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 297

M. Kawaguti and N. Kitajima

a. its ancestors from there upstream tans);

b. its descendants from there downstream

(des).

The default is ans = 0 and des = co; that is, the

target-file and all of the files it includes in a cascade

downstream.

t e x j ump first looks for the file Tex-Input-Tree

in the current working du-ectory, and obtains from

it the tree path which reaches the root file from

target-file. If Tex-Input-Tree is missing, target-file

is assumed to be the root file.

As for ancestors, inclusion is limited to only

those files directly on that path. No siblings of the

target-file or of its ancestors are included. If ans

is smaller than the generation number to the root

file, some of the files closer to the root, including

the root itself, wdl be out of range for the file

inclusion scope. t e x j ump inspects the content of

each of these files, and if any of them contains the

preamble and/or postamble, these portions (not the

entire file) are all extracted for inclusion despite the

scope rule.

The file inclusion rule for the descendants is

much simpler. If des is specified as the option

parameter to the texjump command, up to des

generations of direct descendants of target-file are

included. Otherwise, all of its descendants are

included.

t e x j ump suppresses the file inclusion simply

by altering the string \ input or \i nc l ude to

\par \v ru le w id th 2em he ight l e x
\qquad{\tt \s t r ing\ input} \quad

in the same line, which generates a line like

\i nput input-file-name
on the preview screen, thus malung it clear that the

\ input command line is there.

Preambles and Postambles

texjump assumes that each file consists of three

parts:

1. an (optional) preamble;

2. the main body;

3. an (optional) postamble.

The preamble, if any, is an arbitrary number of

lines at the beginning of the file bounded by two

h e s with the unique signatures:

%**begi nni ng-of-header

and
o A * C 'end-of-header

Likewise the postamble might be at the end of the

file, bounded similarly by the lines:
0 1 ~ X--begi nn i ng-of-tai 1 er

and

%**end-of-tai 1 e r .
The root file is exceptional in that both explicit

and implicit definitions of both the preamble and

postamble are permitted. For those files which do

not have the above-mentioned signature line for

preamble initiation, if the line \begin{document}

is encountered within the first 100 lines then the

region from the first line to this implicit preamble

terminator line is treated as the preamble. The same

is true with the postamble. The implicit postamble

in most cases is from a line which contains

\end{document}

\bye
or

\end

till the very end of the file.

texjump inserts positional tags neither in the

preamble nor in the postamble. Therefore any TEX

codes, critical for the document but irrelevant for

positioning, should be placed inside these regions.

TEX macro defmtions, variable parameters setting,

or inclusion of system files are typical examples.

It should be noted that both preambles and

postambles of all the files involved in the TEX tree

are always included, irrespective of the scope rule.

Source Recompilation

Since texjump keeps showing the very same dv i

file, and therefore the recent modifications are not

reflected on the viewing screen, updating the screen

may become desirable after some modification of

the source fdes. Talung into account the time (J.~)TEX

takes to compile, however, it may hamper efficient

editing work if we let texjump decide to initiate

automatically the recompilation of the latest source

files over and over again even at sporadic intervals.

Therefore, unless the user instructs xdvi + to do so

explicitly, recompilation does not take place.

Sending a C character to the xdvi+ window

signals it to perform a recompilation. xdvi+

conveys to texjump the acceptance of the user's

request and waits for the renewed dv i file. When

available, it redraws the screen using the new d v i

file.

Intermediate Files

Since our scheme modifies the content of the

(LA)TEX source files, we must work on the copied

files. Therefore texjump first creates a new (tem-

porary) working directory with the user-specified

path-name. It then reproduces there the entire

298 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Concurrent Use of Previewer with Edtor

duectory structure of all the files involved, taking

into account the file inclusion rule.

texjump identifies the "local root" for those

files which fall outside of the clusters stem-

ming from the original current working directory.

t e x j ump assigns to each of them a subdirectory in

the above-mentioned working drectory and gives it

an arbitrary name. t e x j ump keeps the entire record

of the file mapping between original and copy.

In this manner, the intermediate files are ef-

fectively hidden from the user, thus creating the

impression that one is dealing directly with the orig-

inal files. In reality, what the previewer is showing

on the screen, and giving the positional information

for, corresponds to the copied files, whde what the

editor is showing in its window are the genuine

original files.

In order to take t h s hiding process a step

further, even the (LA)TEX compiler is manipulated

by t e x j ump on purpose. When the (E)TEX compiler

detects an error in a source file, the user usually calls

for the editor by responding with an "e" character.

The compiler then transfers control to the user-

specified editor. It instructs the editor to open

the temporary file, because thls is where it found

the error. t ex j ump, however, swaps the shell's

environmental variable BTEXEDIT temporarily with

a fake editor, t e x j ump-ed, just before (LA)TEX starts

compilation of the tagged files. Therefore it is

t e x j ump-ed which receives information about the

file (path-name) and the line number. Its sole

role is to identify the original source file from the

received information, and then to call in the real

editor the user had requested, acting as if (LAITEX

had performed that job.

In order to enforce integrity we minimize the

possib&ty of confusing the original and the copies

by deleting the temporary subdirectory created by

texjump each time xdvi+ is relinquished after

previewing.

Option Switches

The Unix shell can execute tex j ump as a stand-alone

process. It expects a (LA)TEX source file name, and

optional switches may also be specified.

% t e x j ump [-opt [nurn] [, . . .] 1 target-file

If target-file does not specify a filename extension,

t e x j ump assumes it to be . tex.

Valid option switches -opt are:

-h Displays the entire list of switch options.

-p Instructs texjump to treat all files in

paragraph mode.

-n nurn Lets the (B)TEX compiler repeat the

compilation nurn times (default is I).

-t nurn Start from the ancestor nurn genera-

tions upstream in the input tree. nurn = l specifies

that the parent immediately above the source file

(target-file) should be included (default is 0, i.e., no

ancestor is included).

-b nurn Include the \ input files down to

nurn generations of descendants. nurn = 1 means

only the "cmd" files, included directly through an
\i nput command in the source file (target-file), are

to be included.

Generation of xdvi+

The source files for xdvi+, the extended version

of xdvi, are generated through applying a patch to

version 17 of xdvi . It modifies five files, Imakefi 1 e,

dvi-draw. c, t p i c . c, xdvi . c, and xdvi . h, and

adds a new module, jump . c.

i make generates a Makefi 1 e, which takes care

of the entire process of creating xdvi+. Note that

xdvi + preserves all features of the original xdvi.

Customization

Users can specify some of the critical parameters

controlling t ex jump. They are described in a con-

figuration file, whose default name is . t ex j umpcfg

(this can be altered at installation time). texjump

looks for t h s file successively in the current direc-

tory, then in the user's home directory, and finally

it uses the parameters in the system default file. It

specifies to t e x j ump the choice of:

1. the temporary worlung directory to be created

(and removed subsequently);

2. the previewer;

3. the name of the \ input tree file generated by

t e x t ree;

4. the (LA)TEX compiler;

5. the signatures signaling the end of the preamble

part;

6. the signatures signaling the beginning of the

postamble part.

An example of the default . texjumpcfg pa-

rameters is shown below:

Parameter Default

TEXINPUTS . : /import/TeX/i nputs//\

: /i mport/TeX/l i b//

WORKDIR texjump-workdi r

XDVI xdvi +
XDVI-OPTION -S 3

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

M. Kawaguti and N. Kitajima

TREE

TAG

TEX

LATEX

LATEX2 E

FOILTEX

BOH

EOH

BOT

EOT

BOT-TEX

EOH-LATEX

BOT-LATEX

BEGIN-PARMODE

END-PAR-MODE

EXCLUDE-NEXT

EXCLUDE-BLOCK

SEL-TEX

SEL-LATEX

TeLInput-Tree

1oc ${FILE} ${LINE}

/import/TeX/bi n/tex

/import/TeX/bi n / l atex

/import/TeX/bi n / l atex2e

/import/TeX/bi n / f o i 1 t e x

%**begi nni ng-of-header

%**end-of-header

%**begi nni ng-of-tai 1 e r

%**end-of-tai 1 e r

\bye
\end

\begi n{document}

\end{document}
0 0 0 &A<
0 0 0 /oX/o>

%%% !

%%%-

%**pl a i n-tex
%**tex

\ input ep1 a i n

\documentstyle{foi ls}
0 I.. X - - f o i 1 tex

%** latex

\documentsty1 e
o 4 *.. " latex2e

\documentcl ass

Conclusions

(E)TEX source files can be edited using an Emacs-

type editor, say GNU Emacs. By clicking the mouse

on an arbitrary page of the xdvi preview screen, the

cursor (point) moves directly to the interesting spot

in the Emacs window, that is displayed next to the

xdvi window.

Two prototype versions, for Njove and GNU

Emacs, are currently operational on workstations

running the 4.3BSD and SunOS operating systems.

Porting the software to other Unix platforms is

expected t o be straightforward. t e x j ump assumes

that the presence of the standard GNU development

environment on the target machme. The program,

written in the C language, can be compiled with GNU

gcc.

The program will be available through anony-

mous ftp a t i 1nwsl . fu is . fuku i -u .ac. j p in the

directories t e x j ump, xdvi + and t e x t ree under

/pub/tex/.

Njove is a bilingual editor, whch supports

both English (using the single-byte ASCII character

code set) and Japanese (using the two-byte Japanese

character code set). It can be found in the &ectory

/pub/edi t o r / n jove at the same ftp site.

Acknowledgments

The authors thank Takayuki Kato for his contri-

bution in making t ex j ump worthy of real-world

applications through improving its functionalities.

Jun-ich Takagi wrote the first rudimentary interface

module for GNU Emacs using Emacs lisp.

Bibliography

Harrison, Michael A., "News from the VORTEX Project",

TUGboatlO(l), pages 11-14, 1989.

Cooper, Eric, Robert Scheifler, and Mark Eichin,

"xdvi" on-line manual, June, 1993.

Payne, Jonathan, JOVE Manual for UNlX Users, 1986.

Kawaguti, Minato, "Dynamic Filling with an Emacs

Type Editor", Ptroc. jus 1 0th Anniversary Intern.

UNIXSyrnp., Japan UNIX Soc., pages 49-58, 1992.

300 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

